Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements.: Part II:: Fully discretized scheme and quadrature formulas

被引:53
作者
Bermudez, Alfredo
Nogueiras, Maria R.
Vazquez, Carlos
机构
[1] Univ Santiago, Dept Matemat Aplicada, E-15706 Santiago, Spain
[2] Univ A Coruna, Dept Matemat, La Coruna 15071, Spain
关键词
convection-diffusion equation; Lagrange-Galerkin methods; stability; error estimates; second order schemes; quadrature formulas;
D O I
10.1137/040615109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a higher order Lagrange - Galerkin discretization method is analyzed when applied to a variable coeffcient convection-(possibly degenerated) diffusion-reaction equation with mixed Dirichlet - Robin boundary conditions. In a previous paper [A. Bermudez, M. R. Nogueiras, and C. Vazquez, SIAM J. Numer. Anal., to appear], the proposed second order time discretization scheme has been rigorously introduced for exact and approximated characteristics. Moreover, the l(infinity)(L-2) stability property and l(infinity)(L-2) error estimates of order O(Delta t(2)) have been obtained. As a continuation of that work, consistency error estimates of order O(Delta t(2) + h(k)) are obtained for the fully discretized Lagrange - Galerkin scheme. Moreover, adequate quadrature formulas are proposed for the practical implementation of the method with particular finite element spaces. Finally, some numerical tests illustrate the theoretical results and the performance of the combination of second order Lagrange - Galerkin schemes with quadrature formulas.
引用
收藏
页码:1854 / 1876
页数:23
相关论文
共 21 条
[1]  
[Anonymous], MATH FINITE ELEMENTS
[2]  
[Anonymous], 1981, ADV COMPUTER METHODS
[3]  
Baranger J, 1999, ESAIM-MATH MODEL NUM, V33, P1223
[4]   Error estimate for convection problem with characteristics method [J].
Baranger, J ;
Esslaoui, D ;
Machmoum, A .
NUMERICAL ALGORITHMS, 1999, 21 (1-4) :49-56
[5]   FINITE-ELEMENTS AND CHARACTERISTICS FOR SOME PARABOLIC-HYPERBOLIC PROBLEMS [J].
BERCOVIER, M ;
PIRONNEAU, O ;
SASTRI, V .
APPLIED MATHEMATICAL MODELLING, 1983, 7 (02) :89-96
[6]   THE CHARACTERISTIC METHOD FOR THE STATIONS CONVECTION-DIFFUSION PROBLEMS [J].
BERMUDEZ, A ;
DURANY, J .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (01) :7-26
[7]   Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements.: Part I:: Time discretization [J].
Bermudez, Alfredo ;
Nogueiras, Maria R. ;
Vazquez, Carlos .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :1829-1853
[8]   A HIGH-ORDER CHARACTERISTICS METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BOUKIR, K ;
MADAY, Y ;
METIVET, B .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :211-218
[9]  
Boukir K, 1997, INT J NUMER METH FL, V25, P1421, DOI 10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO
[10]  
2-A