Royden Decomposition for Harmonic Maps with Finite Total Energy

被引:1
作者
Lee, Yong Hah [1 ]
机构
[1] Ewha Womans Univ, Dept Math Educ, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Harmonic map; harmonic boundary; Royden decomposition; MANIFOLDS; MAPPINGS;
D O I
10.1007/s00025-015-0503-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the harmonic map version of the Royden decomposition in the sense that given any bounded C (1)-map f with finite total energy on a complete Riemannian manifold into a Cartan-Hadamard manifold, there exists a unique bounded harmonic map with finite total energy from the manifold into the Cartan-Hadamard manifold taking the same boundary value at each harmonic boundary point as that of f.
引用
收藏
页码:687 / 692
页数:6
相关论文
共 50 条
[41]   Harmonic Maps on Kenmotsu Manifolds [J].
Rehman, Najma Abdul .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (03) :197-208
[42]   Regularity of harmonic maps with the potential [J].
Yuming Chu ;
Xiangao Liu .
Science in China Series A, 2006, 49 :599-610
[43]   Regularity of harmonic maps with the potential [J].
Chu, YM ;
Liu, XG .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05) :599-610
[44]   Harmonic maps on Sasakian manifolds [J].
Jaiswal, Jai Prakash .
JOURNAL OF GEOMETRY, 2013, 104 (02) :309-315
[45]   COMPUTING HARMONIC MAPS AND CONFORMAL MAPS ON POINT CLOUDS [J].
Wu, Tianqi ;
Yau, Shing-Tung .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (05) :880-909
[46]   A bridge principle for harmonic maps [J].
Lee, Y ;
Wang, AN ;
Wu, DY .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (02) :107-127
[47]   On subelliptic harmonic maps with potential [J].
Dong, Yuxin ;
Luo, Han ;
Yu, Weike .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 65 (01)
[48]   On VT-harmonic maps [J].
Chen, Qun ;
Jost, Juergen ;
Qiu, Hongbing .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 57 (01) :71-94
[49]   A Bridge Principle for Harmonic Maps [J].
Ynging Lee ;
Ai Nung Wang ;
Derchyi Wu .
Annals of Global Analysis and Geometry, 2000, 18 :107-127
[50]   On the Morse Index of Harmonic Maps [J].
Hafida Benallal ;
Mohammed Benalili .
Mediterranean Journal of Mathematics, 2023, 20