Royden Decomposition for Harmonic Maps with Finite Total Energy

被引:1
作者
Lee, Yong Hah [1 ]
机构
[1] Ewha Womans Univ, Dept Math Educ, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Harmonic map; harmonic boundary; Royden decomposition; MANIFOLDS; MAPPINGS;
D O I
10.1007/s00025-015-0503-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the harmonic map version of the Royden decomposition in the sense that given any bounded C (1)-map f with finite total energy on a complete Riemannian manifold into a Cartan-Hadamard manifold, there exists a unique bounded harmonic map with finite total energy from the manifold into the Cartan-Hadamard manifold taking the same boundary value at each harmonic boundary point as that of f.
引用
收藏
页码:687 / 692
页数:6
相关论文
共 50 条
[31]   CLIFFORD SYSTEMS, HARMONIC MAPS AND METRICS WITH NONNEGATIVE CURVATURE [J].
Qian, Chao ;
Tang, Zizhou ;
Yan, Wenjiao .
PACIFIC JOURNAL OF MATHEMATICS, 2022, 320 (02) :391-424
[32]   On the Dirichlet problem for -harmonic maps I: compact targets [J].
Pigola, Stefano ;
Veronelli, Giona .
GEOMETRIAE DEDICATA, 2015, 177 (01) :307-322
[33]   On C∞-Compactness of Quasiconformal Harmonic Maps on the Poincare Disk [J].
Yao, Guowu .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (03) :365-374
[34]   Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii [J].
Banas, L'ubomir ;
Prohl, Andreas ;
Schaetzle, Reiner .
NUMERISCHE MATHEMATIK, 2010, 115 (03) :395-432
[35]   Finite Time Blow-up for Heat Flows of Self-induced Harmonic Maps [J].
Chen, Bo ;
Wang, You De .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (11) :2771-2808
[36]   Sobolev spaces of maps and the Dirichlet problem for harmonic maps [J].
Pigola, Stefano ;
Veronelli, Giona .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
[37]   Regularity of harmonic maps with the potential [J].
CHU Yuming LIU Xiangao Department of Mathematics Huzhou Teachers College Huzhou China ;
Institute of Mathematics Fudan University Shanghai China .
ScienceinChina(SeriesA:Mathematics), 2006, (05) :599-610
[38]   Line-harmonic maps [J].
Berard, Vincent .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (02) :266-298
[39]   HARMONIC MAPS AND TWISTORIAL STRUCTURES [J].
Deschamps, G. ;
Loubeau, E. ;
Pantilie, R. .
MATHEMATIKA, 2020, 66 (01) :112-124
[40]   A Factorization Theorem for Harmonic Maps [J].
Nathaniel Sagman .
The Journal of Geometric Analysis, 2021, 31 :11714-11740