Royden Decomposition for Harmonic Maps with Finite Total Energy

被引:1
作者
Lee, Yong Hah [1 ]
机构
[1] Ewha Womans Univ, Dept Math Educ, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Harmonic map; harmonic boundary; Royden decomposition; MANIFOLDS; MAPPINGS;
D O I
10.1007/s00025-015-0503-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the harmonic map version of the Royden decomposition in the sense that given any bounded C (1)-map f with finite total energy on a complete Riemannian manifold into a Cartan-Hadamard manifold, there exists a unique bounded harmonic map with finite total energy from the manifold into the Cartan-Hadamard manifold taking the same boundary value at each harmonic boundary point as that of f.
引用
收藏
页码:687 / 692
页数:6
相关论文
共 50 条
[21]   CONVERGENCE OF AN ITERATIVE ALGORITHM FOR TEICHMULLER MAPS VIA HARMONIC ENERGY OPTIMIZATION [J].
Lui, Lok Ming ;
Gu, Xianfeng ;
Yau, Shing-Tung .
MATHEMATICS OF COMPUTATION, 2015, 84 (296) :2823-2842
[22]   INFINITE ENERGY EQUIVARIANT HARMONIC MAPS, DOMINATION, AND ANTI-DE SITTER 3-MANIFOLDS [J].
Sagman, Nathaniel .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 124 (03) :553-598
[23]   Bounded harmonic maps [J].
Benoist, Yves ;
Hulin, Dominique .
GEOMETRIAE DEDICATA, 2023, 217 (06)
[24]   Bounded harmonic maps [J].
Yves Benoist ;
Dominique Hulin .
Geometriae Dedicata, 2023, 217
[25]   A volume decreasing theorem for -harmonic maps and applications [J].
Zhao, Guangwen .
ARCHIV DER MATHEMATIK, 2018, 110 (06) :629-635
[26]   Harmonic maps with torsion [J].
Branding, Volker .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) :1373-1390
[27]   Stability of -Harmonic Maps [J].
Pirbodaghi, Zahra ;
Rezaii, Morteza Mirmohammad ;
Torbaghan, Seyed Mehdi Kazemi .
MATHEMATICS, 2018, 6 (06)
[28]   Existence of harmonic maps into CAT(1) spaces [J].
Breiner, Christine ;
Fraser, Ailana ;
Huang, Lan-Hsuan ;
Mese, Chikako ;
Sargent, Pam ;
Zhang, Yingying .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2020, 28 (04) :781-835
[29]   Harmonic Self-Maps of SU(3) [J].
Siffert, Anna .
JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) :587-605
[30]   Maps of several variables of finite total variation. I. Mixed differences and the total variation [J].
Chistyakov, Vyacheslav V. ;
Tretyachenko, Yuliya V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) :672-686