Royden Decomposition for Harmonic Maps with Finite Total Energy

被引:1
|
作者
Lee, Yong Hah [1 ]
机构
[1] Ewha Womans Univ, Dept Math Educ, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Harmonic map; harmonic boundary; Royden decomposition; MANIFOLDS; MAPPINGS;
D O I
10.1007/s00025-015-0503-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the harmonic map version of the Royden decomposition in the sense that given any bounded C (1)-map f with finite total energy on a complete Riemannian manifold into a Cartan-Hadamard manifold, there exists a unique bounded harmonic map with finite total energy from the manifold into the Cartan-Hadamard manifold taking the same boundary value at each harmonic boundary point as that of f.
引用
收藏
页码:687 / 692
页数:6
相关论文
共 50 条
  • [1] Royden Decomposition for Harmonic Maps with Finite Total Energy
    Yong Hah Lee
    Results in Mathematics, 2017, 71 : 687 - 692
  • [2] SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS
    Hass, Joel
    Scott, Peter
    ASIAN JOURNAL OF MATHEMATICS, 2015, 19 (04) : 593 - 636
  • [3] Asymptotic Boundary Value Problem of Harmonic Maps via Harmonic Boundary
    Lee, Yong Hah
    POTENTIAL ANALYSIS, 2014, 41 (02) : 463 - 468
  • [4] Energy of twisted harmonic maps of Riemann surfaces
    Goldman, William M.
    Wentworth, Richard A.
    IN THE TRADITION OF AHLFORS-BERS, IV, 2007, 432 : 45 - +
  • [5] Convexity of energy functions of harmonic maps homotopic to covering maps of surfaces
    Kim, Inkang
    Wan, Xueyuan
    Zhang, Genkai
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (10)
  • [6] Moving mesh finite element methods based on harmonic maps
    Li, R
    Liu, WB
    Tang, T
    Zhang, PW
    SCIENTIFIC COMPUTING AND APPLICATIONS, 2001, 7 : 143 - 156
  • [7] HARMONIC MAPS ON DOMAINS WITH PIECEWISE LIPSCHITZ CONTINUOUS METRICS
    Li, Haigang
    Wang, Changyou
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 264 (01) : 125 - 149
  • [8] Exponentially harmonic maps, exponential stress energy and stability
    Chiang, Yuan-Jen
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (06)
  • [9] Some remarks on energy inequalities for harmonic maps with potential
    Branding, Volker
    ARCHIV DER MATHEMATIK, 2017, 109 (02) : 151 - 165
  • [10] Harmonic Maps and Biharmonic Maps
    Urakawa, Hajime
    SYMMETRY-BASEL, 2015, 7 (02): : 651 - 674