Effects of doping on the optical fiber drawing process

被引:15
作者
Chen, Chunming [1 ]
Jaluria, Yogesh [1 ]
机构
[1] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA
关键词
Optical fiber drawing; Core-cladding structure; Zonal method; Glass radiation; VISCOSITY; TRANSPORT;
D O I
10.1016/j.ijheatmasstransfer.2009.05.021
中图分类号
O414.1 [热力学];
学科分类号
摘要
Optical fibers are typically drawn from silica preforms, which usually consist of two concentric cylinders called the core and the cladding, heated in a high-temperature furnace. For optical communication purposes, the core generally has a higher average refractive index than the cladding to obtain total internal reflection. This paper investigates the effects of adding dopants to the core or to the cladding, to change the refractive index values, on the optical fiber drawing process. Employing an analytical/numerical model developed earlier to simulate the core-cladding structure of a typical optical fiber, the paper considers different dopants and the effects resulting from the consequent changes in properties, particularly the radiation absorption properties, on the temperature distributions, flow, neck-down profile, thermally induced defects and draw tension. The zonal method is applied to model the radiation transfer in the glass perform and the purge gas is taken as non-participating. The numerical model has been validated by comparing with results available in the literature, wherever possible. It is found that the effects are significant because of changes in refractive index and absorption of radiation, which give rise to significant changes in temperature and tension. These can. in turn, substantially affect fiber quality and characteristics. Therefore, for an accurate and realistic modeling of the process, the effects of property changes due to dopants on the draw process must be included. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4812 / 4822
页数:11
相关论文
共 20 条
  • [1] [Anonymous], 1996, HDB OPTICAL FIBERS C
  • [2] Bansal N. P., 1986, Handbook of Glass Properties
  • [3] Numerical simulation of transport in optical fiber drawing with core-cladding structure
    Chen, Chunming
    Jaluria, Yogesh
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (04): : 559 - 567
  • [4] Modeling of radiation heat transfer in the drawing of an optical fiber with multilayer structure
    Chen, Chunming
    Jaluria, Yogesh
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (03): : 342 - 352
  • [5] Fleming J.D., 1964, FUSED SILICA MANUAL
  • [6] FORMATION MECHANISM OF DRAWING-INDUCED E' CENTERS IN SILICA OPTICAL FIBERS
    HANAFUSA, H
    HIBINO, Y
    YAMAMOTO, F
    [J]. JOURNAL OF APPLIED PHYSICS, 1985, 58 (03) : 1356 - 1361
  • [7] OPTICAL FIBER DRAWING AND DOPANT TRANSPORT
    Huang, H.
    Miura, R. M.
    Wylie, J. J.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 69 (02) : 330 - 347
  • [8] Izawa T., 1987, Optical Fibers: Materials and Fabrication
  • [9] Jaluria Y., 2003, COMPUTATIONAL HEAT T
  • [10] Effects of variable properties and viscous dissipation during optical fiber drawing
    Lee, SHK
    Jaluria, Y
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1996, 118 (02): : 350 - 358