MRI radiomics: A machine learning approach for the risk stratification of endometrial cancer patients

被引:31
作者
Mainenti, Pier Paolo [1 ]
Stanzione, Arnaldo [2 ]
Cuocolo, Renato [3 ,4 ,5 ]
Del Grosso, Renata [2 ]
Danzi, Roberta [6 ]
Romeo, Valeria [2 ]
Raffone, Antonio [7 ]
Sardo, Attilio Di Spiezio [8 ]
Giordano, Elena [9 ]
Travaglino, Antonio [2 ]
Insabato, Luigi [2 ]
Scaglione, Mariano [6 ,10 ]
Maurea, Simone [2 ]
Brunetti, Arturo [2 ]
机构
[1] CNR, Inst Biostruct & Bioimaging, Naples, Italy
[2] Univ Naples Federico II, Dept Adv Biomed Sci, Naples, Italy
[3] Univ Naples Federico II, Dept Clin Med & Surg, Via S Pansini 5, I-80131 Naples, Italy
[4] Univ Naples Federico II, Interdept Res Ctr Management & Innovat Healthcare, Naples, Italy
[5] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Lab Augmented Real Hlth Monitoring ARHeMLab, Naples, Italy
[6] Pineta Grande Hosp, Dept Radiol, Castel Volturno, CE, Italy
[7] Univ Naples Federico II, Dept Neurosci Reprod Sci & Dent, Naples, Italy
[8] Univ Naples Federico II, Dept Publ Hlth, Naples, Italy
[9] Univ Naples Federico II, Dept Obstet & Gynecol, Naples, Italy
[10] Univ Sassari, Dept Med Surg & Expt Sci, Viale S Pietro, Sassari, SS, Italy
关键词
Machine learning; Endometrial neoplasm; Magnetic resonance imaging; PERSONALIZED MEDICINE; FUTURE; MODEL;
D O I
10.1016/j.ejrad.2022.110226
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To investigate radiomics and machine learning (ML) as possible tools to enhance MRI-based risk stratification in patients with endometrial cancer (EC). Method: From two institutions, 133 patients (Institution1 = 104 and Institution2 = 29) with EC and pre-operative MRI were retrospectively enrolled and divided in two a low-risk and a high-risk group according to EC stage and grade. T2-weighted (T2w) images were three-dimensionally annotated to obtain volumes of interest of the entire tumor. A PyRadiomics based and previously validated pipeline was used to extract radiomics features and perform feature selection. In particular, feature stability, variance and pairwise correlation were analyzed. Then, the least absolute shrinkage and selection operator technique and recursive feature elimination were used to obtain the final feature set. The performance of a Support Vector Machine (SVM) algorithm was assessed on the dataset from Institution 1 via 2-fold cross-validation. Then, the model was trained on the entire Institution 1 dataset and tested on the external test set from Institution 2. Results: In total, 1197 radiomics features were extracted. After the exclusion of unstable, low variance and intercorrelated features least absolute shrinkage and selection operator and recursive feature elimination identified 4 features that were used to build the predictive ML model. It obtained an accuracy of 0.71 and 0.72 in the train and test sets respectively. Conclusions: Whole-lesion T2w-derived radiomics showed encouraging results and good generalizability for the identification of low-risk EC patients.
引用
收藏
页数:6
相关论文
共 41 条
[11]   The future of precision medicine: towards a more predictive personalized medicine [J].
Elemento, Olivier .
EMERGING TOPICS IN LIFE SCIENCES, 2020, 4 (02) :175-177
[12]   Imaging and Staging of Endometrial Cancer [J].
Faria, S. C. ;
Devine, C. E. ;
Rao, B. ;
Sagebiel, T. ;
Bhosale, P. .
SEMINARS IN ULTRASOUND CT AND MRI, 2019, 40 (04) :287-294
[13]   Whole-Volume Tumor MRI Radiomics for Prognostic Modeling in Endometrial Cancer [J].
Fasmer, Kristine E. ;
Hodneland, Erlend ;
Dybvik, Julie A. ;
Wagner-Larsen, Kari ;
Trovik, Jone ;
Salvesen, Oyvind ;
Krakstad, Camilla ;
Haldorsen, Ingfrid H. S. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (03) :928-937
[14]   Integrated genomic characterization of endometrial carcinoma [J].
Getz, Gad ;
Gabriel, Stacey B. ;
Cibulskis, Kristian ;
Lander, Eric ;
Sivachenko, Andrey ;
Sougnez, Carrie ;
Lawrence, Mike ;
Kandoth, Cyriac ;
Dooling, David ;
Fulton, Robert ;
Fulton, Lucinda ;
Kalicki-Veizer, Joelle ;
McLellan, Michael D. ;
O'Laughlin, Michelle ;
Schmidt, Heather ;
Wilson, Richard K. ;
Ye, Kai ;
Ding, Li ;
Mardis, Elaine R. ;
Ally, Adrian ;
Balasundaram, Miruna ;
Birol, Inanc ;
Butterfield, Yaron S. N. ;
Carlsen, Rebecca ;
Carter, Candace ;
Chu, Andy ;
Chuah, Eric ;
Chun, Hye-Jung E. ;
Dhalla, Noreen ;
Guin, Ranabir ;
Hirst, Carrie ;
Holt, Robert A. ;
Jones, Steven J. M. ;
Lee, Darlene ;
Li, Haiyan I. ;
Marra, Marco A. ;
Mayo, Michael ;
Moore, Richard A. ;
Mungall, Andrew J. ;
Plettner, Patrick ;
Schein, Jacqueline E. ;
Sipahimalani, Payal ;
Tam, Angela ;
Varhol, Richard J. ;
Robertson, A. Gordon ;
Pashtan, Itai ;
Saksena, Gordon ;
Onofrio, Robert C. ;
Schumacher, Steven E. ;
Tabak, Barbara .
NATURE, 2013, 497 (7447) :67-73
[15]   Personalized medicine: motivation, challenges, and progress [J].
Goetz, Laura H. ;
Schork, Nicholas J. .
FERTILITY AND STERILITY, 2018, 109 (06) :952-963
[16]   The Perspectives of Fertility Preservation in Women with Endometrial Cancer [J].
Knez, Jure ;
Al Mahdawi, Leyla ;
Takac, Iztok ;
Sobocan, Monika .
CANCERS, 2021, 13 (04) :1-18
[17]   A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research [J].
Koo, Terry K. ;
Li, Mae Y. .
JOURNAL OF CHIROPRACTIC MEDICINE, 2016, 15 (02) :155-163
[18]   A Predictor of Tumor Recurrence in Patients With Endometrial Carcinoma After Complete Resection of the Tumor: The Role of Pretreatment Apparent Diffusion Coefficient [J].
Kuwahara, Ryo ;
Kido, Aki ;
Tanaka, Shiro ;
Abiko, Kaoru ;
Nakao, Kyoko ;
Himoto, Yuki ;
Nishio, Naoko ;
Kurata, Yasuhisa ;
Mandai, Masaki ;
Togashi, Kaori .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2018, 28 (05) :861-868
[19]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[20]   The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges [J].
Liu, Zhenyu ;
Wang, Shuo ;
Dong, Di ;
Wei, Jingwei ;
Fang, Cheng ;
Zhou, Xuezhi ;
Sun, Kai ;
Li, Longfei ;
Li, Bo ;
Wang, Meiyun ;
Tian, Jie .
THERANOSTICS, 2019, 9 (05) :1303-1322