Energy-Based In-Domain Control of a Piezo-Actuated Euler-Bernoulli Beam

被引:4
作者
Malzer, Tobias [1 ]
Rams, Hubert [2 ]
Schoeberl, Markus [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Automat Control & Control Syst Technol, Altenbergerstr 66, A-4040 Linz, Austria
[2] B&R Ind Automat GmbH, B&R Str 1, A-5142 Eggelsberg, Austria
基金
奥地利科学基金会;
关键词
infinite-dimensional systems; partial differential equations; in-domain actuation; differential geometry; port-Hamiltonian systems; structural invariants; dynamic controllers; HAMILTONIAN-FORMULATION; CASIMIR FUNCTIONALS; SYSTEMS;
D O I
10.1016/j.ifacol.2019.08.025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main contribution of this paper is the extension of the well-known boundary-control strategy based on structural invariants to the control of infinite-dimensional systems with in-domain actuation. The systems under consideration, governed by partial differential equations, are described in a port-Hamiltonian setting making heavy use of the underlying jet-bundle structure, where we restrict ourselves to systems with 1-dimensional spatial domain and 2nd-order Hamiltonian. To show the applicability of the proposed approach, we develop a dynamic controller for an Euler-Bernoulli beam actuated with a pair of piezoelectric patches and conclude the article with simulation results. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 20 条
[1]  
Ennsbrunner H., 2005, P 44 IEEE C DEC CONT
[2]  
Giachetta G., 1997, New Lagrangian and Hamiltonian Methods in Field Theory
[3]  
Jacob B., 2012, Oper. Theory: Adv. Appl, V223
[4]   Dirac structures and boundary control systems associated with skew-symmetric differential operators [J].
Le Gorrec, Y ;
Zwart, H ;
Maschke, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (05) :1864-1892
[5]   Port Hamiltonian formulation of infinite dimensional systems I. Modeling [J].
Macchelli, A ;
van der Schaft, AJ ;
Melchiorri, C .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :3762-3767
[6]   Modeling and control of the Timoshenko beam. The distributed port Hamiltonian approach [J].
Macchelli, A ;
Melchiorri, C .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (02) :743-767
[7]  
Malzer T., 2018, P C DEC CONTR CDC
[8]  
Meirovitch L., 1967, ANAL METHODS VIBRATI
[9]   Putting energy back in control [J].
Ortega, R ;
van der Schaft, AJ ;
Mareels, I ;
Maschke, B .
IEEE CONTROL SYSTEMS MAGAZINE, 2001, 21 (02) :18-33
[10]  
Rams H, 2017, P AMER CONTR CONF, P1139, DOI 10.23919/ACC.2017.7963106