The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions

被引:405
作者
O'Day, PA
Vlassopoulos, D
Root, R
Rivera, N
机构
[1] Univ Calif, Sch Nat Sci, Marced, CA 95344 USA
[2] SS papadopulos & Associates, Portland, OR 97204 USA
关键词
D O I
10.1073/pnas.0402775101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The chemical speciation of arsenic in sediments and porewaters of aquifers is the critical factor that determines whether dissolved arsenic accumulates to potentially toxic levels. Sequestration of arsenic in solid phases, which may occur by adsorption or precipitation processes, controls dissolved concentrations. We present synchrotron x-ray absorption spectra of arsenic in shallow aquifer sediments that indicate the local structure of realgar (AsS) as the primary arsenic-bearing phase in sulfate-reducing conditions at concentrations of 1-3 mmol(.)kg(-1), which has not previously been verified in sediments at low temperature. Spectroscopic evidence shows that arsenic does not substitute for iron or sulfur in iron sulfide minerals at the molecular scale. A general geochemical model derived from our field and spectroscopic observations show that the ratio of reactive iron to sulfur in the system controls the distribution of solid phases capable of removing arsenic from solution when conditions change from oxidized to reduced, the rate of which is influenced by microbial processes. Because of the difference in solubility of iron versus arsenic sulfides, precipitation of iron sulfide may remove sulfide from solution but not arsenic if precipitation rates are fast. The lack of incorporation of arsenic into iron sulfides may result in the accumulation of dissolved As(III) if adsorption is weak or inhibited. Aquifers particularly at risk for such geochemical conditions are those in which oxidized and reduced waters mix, and where the amount of sulfate available for microbial reduction is limited.
引用
收藏
页码:13703 / 13708
页数:6
相关论文
共 52 条
[1]   DETAILED MODEL FOR THE MOBILITY OF ARSENIC IN LACUSTRINE SEDIMENTS BASED ON MEASUREMENTS IN LAKE OHAKURI [J].
AGGETT, J ;
OBRIEN, GA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1985, 19 (03) :231-238
[2]  
BONAZZI P, 1995, AM MINERAL, V80, P400
[3]   Arsenite sorption on troilite (FeS) and pyrite (FeS2) [J].
Bostick, BC ;
Fendorf, S .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (05) :909-921
[4]   Iron control by equilibria between hydroxy-Green Rusts and solutions in hydromorphic soils [J].
Bourrié, G ;
Trolard, F ;
Génin, JMR ;
Jaffrezic, A ;
Maître, V ;
Abdelmoula, M .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1999, 63 (19-20) :3417-3427
[5]   SORPTION OF ARSENIC BY IRON-OXIDES AND OXYHYDROXIDES IN SOILS [J].
BOWELL, RJ .
APPLIED GEOCHEMISTRY, 1994, 9 (03) :279-286
[6]   FIXATION, TRANSFORMATION, AND MOBILIZATION OF ARSENIC IN SEDIMENTS [J].
BRANNON, JM ;
PATRICK, WH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1987, 21 (05) :450-459
[7]   Sorption of trace elements on mineral surfaces: Modern perspectives from spectroscopic studies, and comments on sorption in the marine environment [J].
Brown, GE ;
Parks, GA .
INTERNATIONAL GEOLOGY REVIEW, 2001, 43 (11) :963-1073
[8]   Alacranite, As4S4:: A new occurrence, new formula, and determination of the crystal structure [J].
Burns, PC ;
Percival, JB .
CANADIAN MINERALOGIST, 2001, 39 (03) :809-818
[9]   Speciation and fate of trace metals in estuarine sediments under reduced and oxidized conditions, Seaplane Lagoon, Alameda Naval Air Station (USA) [J].
Carroll, S ;
O'Day, PA ;
Esser, B ;
Randall, S .
GEOCHEMICAL TRANSACTIONS, 2002, 3 (1) :81-101
[10]   Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility [J].
Dixit, S ;
Hering, JG .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (18) :4182-4189