Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

被引:33
作者
Brunt, Kelly M. [1 ,2 ]
Hawley, Robert L. [3 ]
Lutz, Eric R. [3 ]
Studinger, Michael [2 ]
Sonntag, John G. [4 ,5 ]
Hofton, Michelle A. [6 ]
Andrews, Lauren C. [2 ,7 ]
Neumann, Thomas A. [2 ]
机构
[1] Univ Maryland, ESSIC, College Pk, MD 20742 USA
[2] NASA Goddard Space Flight Ctr, Greenbelt, MD USA
[3] Dartmouth Coll, Dept Earth Sci, Hanover, NH USA
[4] AECOM Corp, Wallops Isl, VA USA
[5] NASA Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA USA
[6] Univ Maryland, Dept Geog Sci, College Pk, MD USA
[7] USRA, Columbia, MD USA
基金
美国国家科学基金会;
关键词
ICE-SHEET; LIDAR; ANTARCTICA; RANGE; MABEL;
D O I
10.5194/tc-11-681-2017
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.
引用
收藏
页码:681 / 692
页数:12
相关论文
共 34 条
[1]   The ICESat-2 Laser Altimetry Mission [J].
Abdalati, Waleed ;
Zwally, H. Jay ;
Bindschadler, Robert ;
Csatho, Bea ;
Farrell, Sinead Louise ;
Fricker, Helen Amanda ;
Harding, David ;
Kwok, Ronald ;
Lefsky, Michael ;
Markus, Thorsten ;
Marshak, Alexander ;
Neumann, Thomas ;
Palm, Stephen ;
Schutz, Bob ;
Smith, Ben ;
Spinhirne, James ;
Webb, Charles .
PROCEEDINGS OF THE IEEE, 2010, 98 (05) :735-751
[2]  
[Anonymous], 1998, GPS KINEMATIC POSITI
[3]   Current State of Precise Point Positioning and Future Prospects and Limitations [J].
Bisnath, S. ;
Gao, Y. .
OBSERVING OUR CHANGING EARTH, 2009, 133 :615-+
[4]  
Blair J., 2015, ICEBRIDGE LVIS GH L2
[5]  
Blair J., 2011, PREICEBRIDGE LVIS L2
[6]   The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography [J].
Blair, JB ;
Rabine, DL ;
Hofton, MA .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1999, 54 (2-3) :115-122
[7]  
Boas M. L., 1983, Mathematical Methods for the Physical Sciences
[8]   A range correction for ICESat and its potential impact on ice-sheet mass balance studies [J].
Borsa, A. A. ;
Moholdt, G. ;
Fricker, H. A. ;
Brunt, K. M. .
CRYOSPHERE, 2014, 8 (02) :345-357
[9]   MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development [J].
Brunt, Kelly M. ;
Neumann, Thomas A. ;
Amundson, Jason M. ;
Kavanaugh, Jeffrey L. ;
Moussavi, Mahsa S. ;
Walsh, Kaitlin M. ;
Cook, William B. ;
Markus, Thorsten .
CRYOSPHERE, 2016, 10 (04) :1707-1719
[10]   Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission [J].
Brunt, Kelly M. ;
Neumann, Thomas A. ;
Walsh, Kaitlin M. ;
Markus, Thorsten .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (05) :935-939