Observation of discrete solitons in lattices with second-order interaction

被引:26
|
作者
Szameit, Alexander [1 ,2 ]
Keil, Robert [3 ]
Dreisow, Felix [3 ]
Heinrich, Matthias [3 ]
Pertsch, Thomas [3 ]
Nolte, Stefan [3 ]
Tuennermann, Andreas [3 ,4 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Inst Solid State, IL-32000 Haifa, Israel
[3] Univ Jena, Inst Phys Appl, D-07743 Jena, Germany
[4] Fraunhofer Inst Appl Opt & Precis Engn, D-07745 Jena, Germany
关键词
D O I
10.1364/OL.34.002838
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present what we believe to be the first experimental demonstration of discrete solitons under the influence of first- and second-order lattice site interaction in zigzag femtosecond laser-written waveguide arrays. We show how the formation of these entities is affected by different ratios of the interaction strength. Increasing the second-order coupling between the lattices sites yields an almost linear increase of the input power required for soliton formation. (C) 2009 Optical Society of America
引用
收藏
页码:2838 / 2840
页数:3
相关论文
共 50 条
  • [31] On Duality in Second-Order Discrete and Differential Inclusions with Delay
    Elimhan N. Mahmudov
    Journal of Dynamical and Control Systems, 2020, 26 : 733 - 760
  • [32] Computing the uncomputable; or, The discrete charm of second-order simulacra
    Parker, Matthew W.
    SYNTHESE, 2009, 169 (03) : 447 - 463
  • [33] A COMPACTNESS RESULT FOR A SECOND-ORDER VARIATIONAL DISCRETE MODEL
    Braides, Andrea
    Defranceschi, Anneliese
    Vitali, Enrico
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 389 - 410
  • [34] Computing the uncomputable; or, The discrete charm of second-order simulacra
    Matthew W. Parker
    Synthese, 2009, 169 : 447 - 463
  • [35] Periodic solutions for second-order discrete Hamiltonian systems
    Tang, X. H.
    Zhang, Xingyong
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (10) : 1413 - 1430
  • [36] Nonoscillatory solutions of a second-order nonlinear discrete system
    Matucci, Serena
    Rehak, Pavel
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 833 - 845
  • [37] A proof that a discrete delta function is second-order accurate
    Beale, J. Thomas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (04) : 2195 - 2197
  • [38] On boundary value problems for second-order discrete inclusions
    Stehlik, Petr
    Tisdell, Christopher C.
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (02) : 153 - 163
  • [39] The nature of discrete second-order self-similarity
    Gefferth, A
    Veitch, D
    Maricza, I
    Molnár, S
    Ruzsa, I
    ADVANCES IN APPLIED PROBABILITY, 2003, 35 (02) : 395 - 416
  • [40] Second-order eigensensitivity analysis of discrete structural systems
    Cao, X.
    Mlejnek, H.P.
    Computers and Structures, 1992, 44 (1-2): : 399 - 404