Integrability and linearizability for Lotka-Volterra systems with the 3: -q resonant saddle point

被引:8
|
作者
Wang, Qinlong [1 ,2 ]
Huang, Wentao [1 ,2 ]
机构
[1] Hezhou Univ, Sch Sci, Hezhou 542800, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin 541004, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2014年
基金
中国国家自然科学基金;
关键词
Lotka-Volterra system; integrability; linearizability; generalized center; POLYNOMIAL DIFFERENTIAL-SYSTEMS; ISOCHRONOUS CENTERS; SINGULAR POINT; VECTOR-FIELDS; C-2;
D O I
10.1186/1687-1847-2014-23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Integrability and linearizability of a Lotka-Volterra system in a neighborhood of the singular point with eigenvalues 3 and any negative integer -q are studied completely. By computing the singular point quantities and generalized period constants, we obtain, respectively, the integrable and linearizable necessary conditions for this class of systems. Then we apply some effective ways to prove the sufficiency. Here the algorithms of finding necessary conditions are all linear and readily done using computer algebra system such as Mathematica or Maple, and these play an important role in solving completely the integrability and linearizability for the 3 : -q resonant case.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Lotka-Volterra Systems with Periodic Orbits
    Kobayashi, Manami
    Suzuki, Takashi
    Yamada, Yoshio
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (01): : 129 - 155
  • [22] A Counterexample to a Result on Lotka-Volterra Systems
    Llibre, Jaume
    ACTA APPLICANDAE MATHEMATICAE, 2016, 142 (01) : 123 - 125
  • [23] On the first integrals of Lotka-Volterra systems
    Gonzalez-Gascon, F
    Salas, DP
    PHYSICS LETTERS A, 2000, 266 (4-6) : 336 - 340
  • [24] Global dynamics of a family of 3-D Lotka-Volterra systems
    Murza, A. C.
    Teruel, A. E.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 269 - 284
  • [25] Integrability and Linearizability Problems of Three Dimensional Lotka–Volterra Equations of Rank-2
    Waleed Aziz
    Qualitative Theory of Dynamical Systems, 2019, 18 : 1113 - 1134
  • [26] The integration of three-dimensional Lotka-Volterra systems
    Maier, Robert S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2158):
  • [27] Dynamics of a Competitive Lotka-Volterra Systems in R3
    Llibre, Jaume
    Martinez, Y. Paulina
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 569 - 577
  • [28] Dynamics of a family of Lotka-Volterra systems in R3
    Llibre, Jaume
    Martinez, Y. Paulina
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 199
  • [29] A NEW CLASS OF INTEGRABLE LOTKA-VOLTERRA SYSTEMS
    Christodoulidi, Helen
    Hone, Andrew N. W.
    Kouloukas, Theodoros E.
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02): : 223 - 237
  • [30] Asymptotic behaviour of solutions of Lotka-Volterra systems
    Baris, J.
    Baris, P.
    Wawiorko, E.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (04) : 610 - 618