Integrability and linearizability for Lotka-Volterra systems with the 3: -q resonant saddle point

被引:9
作者
Wang, Qinlong [1 ,2 ]
Huang, Wentao [1 ,2 ]
机构
[1] Hezhou Univ, Sch Sci, Hezhou 542800, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Lotka-Volterra system; integrability; linearizability; generalized center; POLYNOMIAL DIFFERENTIAL-SYSTEMS; ISOCHRONOUS CENTERS; SINGULAR POINT; VECTOR-FIELDS; C-2;
D O I
10.1186/1687-1847-2014-23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Integrability and linearizability of a Lotka-Volterra system in a neighborhood of the singular point with eigenvalues 3 and any negative integer -q are studied completely. By computing the singular point quantities and generalized period constants, we obtain, respectively, the integrable and linearizable necessary conditions for this class of systems. Then we apply some effective ways to prove the sufficiency. Here the algorithms of finding necessary conditions are all linear and readily done using computer algebra system such as Mathematica or Maple, and these play an important role in solving completely the integrability and linearizability for the 3 : -q resonant case.
引用
收藏
页数:15
相关论文
共 20 条
[1]  
Amelbkin B.B., 1982, NONLINEAR VIBRATION
[2]   Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial [J].
Chavarriga, J ;
Giné, J ;
García, IA .
BULLETIN DES SCIENCES MATHEMATIQUES, 1999, 123 (02) :77-96
[3]   The 1: -q resonant center problem for certain cubic Lotka-Volterra systems [J].
Chen, Xingwu ;
Gine, Jaume ;
Romanovski, Valery G. ;
Shafer, Douglas S. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) :11620-11633
[4]  
Christopher C, 2003, J DYN CONTROL SYST, V9, P311, DOI 10.1023/A:1024643521094
[5]  
Christopher C., 2004, Qual. Theory Dyn. Syst., V5, P11
[6]   Isochronous centers in planar polynomial systems [J].
Christopher, CJ ;
Devlin, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (01) :162-177
[7]   The center problem for a 2:-3 resonant cubic Lotka-Volterra system [J].
Dolicanin, Diana ;
Gine, Jaume ;
Oliveira, Regilene ;
Romanovski, Valery G. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 :12-19
[8]  
Fronville A, 1998, FUND MATH, V157, P191
[9]   Integrability and linearizability of the Lotka-Volterra system with a saddle point with rational hyperbolicity ratio [J].
Gravel, S ;
Thibault, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (01) :20-47
[10]   1:-3 resonant centers on C2 with homogeneous cubic nonlinearities [J].
Hu, Zhaoping ;
Romanovski, Valery G. ;
Shafer, Douglas S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (08) :1927-1940