The Splitting of Reductions of an Abelian Variety

被引:12
作者
Zywina, David [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
L-ADIC REPRESENTATIONS; POINTS; NUMBER; FIELDS; BOUNDS;
D O I
10.1093/imrn/rnt113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider an absolutely simple abelian variety A defined over a number field K. For most places v of K, we study how the reduction A(v) of A modulo v splits up into isogeny. Assuming the Mumford-Tate conjecture for A and possibly increasing the field K, we will show that A(v) is isogenous to the mth power of an absolutely simple abelian variety for all places v of K away from a set of density 0, wheremis an integer depending only on the endomorphism ring End(A((K) over bar)). This proves many cases, and supplies justification, of a conjecture of Murty and Patankar. Under the same assumptions, we will also describe the Galois extension of Q generated by the Weil numbers of A(v) for most v.
引用
收藏
页码:5042 / 5083
页数:42
相关论文
共 50 条
[31]   Pcf and abelian groups [J].
Shelah, Saharon .
FORUM MATHEMATICUM, 2013, 25 (05) :967-1038
[32]   On the arithmetic of abelian varieties [J].
Saidi, Mohamed ;
Tamagawa, Akio .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 762 :1-33
[33]   TORSION OF RATIONAL ELLIPTIC CURVES OVER THE MAXIMAL ABELIAN EXTENSION OF Q [J].
Chou, Michael .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 302 (02) :481-509
[34]   The abelian part of a compatible system and l-independence of the Tate conjecture [J].
Hui, Chun Yin .
MANUSCRIPTA MATHEMATICA, 2020, 161 (1-2) :223-246
[35]   Delsarte's extremal problem and packing on locally compact Abelian groups [J].
Berdysheva, Elena E. ;
Revesz, Szilard G. Y. .
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (02) :1007-1052
[36]   A RESULT ON THE EQUATION xp + yp = zr USING FREY ABELIAN VARIETIES [J].
Billerey, Nicolas ;
Chen, Imin ;
Dieulefait, Luis ;
Freitas, Nuno .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (10) :4111-4117
[37]   Explicit CM theory for level 2-structures on abelian surfaces [J].
Broeker, Reinier ;
Gruenewald, David ;
Lauter, Kristin .
ALGEBRA & NUMBER THEORY, 2011, 5 (04) :495-528
[38]   Splitting hypergeometric functions over roots of unity [J].
Mccarthy, Dermot ;
Tripathi, Mohit .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (03)
[39]   Emergence of non-Abelian SU(2) invariance in Abelian frustrated fermionic ladders [J].
Beradze, Bachana ;
Tsitsishvili, Mikheil ;
Tirrito, Emanuele ;
Dalmonte, Marcello ;
Chanda, Titas ;
Nersesyan, Alexander .
PHYSICAL REVIEW B, 2023, 108 (07)
[40]   Pseudoprime Reductions of Elliptic Curves [J].
David, C. ;
Wu, J. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (01) :81-101