Magnetic properties of Ni-Fe nanowire arrays: effect of template material and deposition conditions

被引:34
作者
Aravamudhan, S. [1 ,2 ]
Singleton, J. [3 ]
Goddard, P. A. [4 ]
Bhansali, S. [2 ]
机构
[1] Georgia Inst Technol, Microelect Res Ctr, Atlanta, GA 30332 USA
[2] Univ S Florida, NNRC, Dept Elect Engn, Tampa, FL 33620 USA
[3] Los Alamos Natl Lab, NHMFL, Los Alamos, NM USA
[4] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
美国国家科学基金会;
关键词
NICKEL; FIELD; MAGNETORESISTANCE; SEPARATIONS; DEPENDENCE; ANISOTROPY; BEHAVIOR; WIRE;
D O I
10.1088/0022-3727/42/11/115008
中图分类号
O59 [应用物理学];
学科分类号
摘要
The objective of this work is to study the magnetic properties of arrays of Ni-Fe nanowires electrodeposited in different template materials such as porous silicon, polycarbonate and alumina. Magnetic properties were studied as a function of template material, applied magnetic field (parallel and perpendicular) during deposition, wire length, as well as magnetic field orientation during measurement. The results show that the application of magnetic field during deposition strongly influences the c-axis preferred orientation growth of the Ni-Fe nanowires. The samples with magnetic field perpendicular to the template plane during deposition exhibit strong perpendicular anisotropy with greatly enhanced coercivity and squareness ratio, particularly in the Ni-Fe nanowires deposited in polycarbonate templates. In the case of polycarbonate template, as magnetic field during deposition increases, both coercivity and squareness ratio also increase. The wire length dependence was also measured for polycarbonate templates. As wire length increases, coercivity and squareness ratio decrease, saturation field increases. Such magnetic behaviour (dependence on template material, magnetic field, wire length) can be qualitatively explained by preferential growth phenomena, dipolar interactions among nanowires and perpendicular shape anisotropy in individual nanowires.
引用
收藏
页数:9
相关论文
共 39 条
[1]   MAGNETIZATION CURVE OF THE INFINITE CYLINDER [J].
AHARONI, A ;
SHTRIKMAN, S .
PHYSICAL REVIEW, 1958, 109 (05) :1522-1528
[2]  
ALENGHAT FJ, 2000, BIOCHEM BIOPH RES CO, V277, P273
[3]   Porous silicon templates for electrodeposition of nanostructures [J].
Aravamudhan, S. ;
Luongo, K. ;
Poddar, P. ;
Srikanth, H. ;
Bhansali, S. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 87 (04) :773-780
[4]   A biosensor based on magnetoresistance technology [J].
Baselt, DR ;
Lee, GU ;
Natesan, M ;
Metzger, SW ;
Sheehan, PE ;
Colton, RJ .
BIOSENSORS & BIOELECTRONICS, 1998, 13 (7-8) :731-739
[5]   GIANT MAGNETORESISTANCE OF NANOWIRES OF MULTILAYERS [J].
BLONDEL, A ;
MEIER, JP ;
DOUDIN, B ;
ANSERMET, JP .
APPLIED PHYSICS LETTERS, 1994, 65 (23) :3019-3021
[6]   Thermal stability of recorded information at high densities [J].
Charap, SH ;
Lu, PL ;
He, YJ .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (01) :978-983
[7]   Crystal orientation dependence and anisotropic properties of macropore formation of p- and n-type silicon [J].
Christophersen, M ;
Carstensen, J ;
Rönnebeck, S ;
Jäger, C ;
Jäger, W ;
Föll, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (06) :E267-E275
[8]   Magnetic field effects on nickel electrodeposition [J].
Devos, O ;
Olivier, A ;
Chopart, JP ;
Aaboubi, O ;
Maurin, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (02) :401-405
[9]   Ferromagnetic resonance studies of Ni nanowire arrays [J].
Ebels, U ;
Duvail, JL ;
Wigen, PE ;
Piraux, L ;
Buda, LD ;
Ounadjela, K .
PHYSICAL REVIEW B, 2001, 64 (14) :1444211-1444216
[10]   Magnetization processes in nickel and cobalt electrodeposited nanowires [J].
Ferre, R ;
Ounadjela, K ;
George, JM ;
Piraux, L ;
Dubois, S .
PHYSICAL REVIEW B, 1997, 56 (21) :14066-14075