Ionic conductive copolymer encapsulated graphite as an anode material for lithium ion batteries

被引:30
作者
Pan, QM [1 ]
Guo, KK [1 ]
Wang, LZ [1 ]
Fang, SB [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing 100080, Peoples R China
关键词
lithium ion batteries; graphite anode; encapsulation; ionic conductive copolymer;
D O I
10.1016/S0167-2738(02)00278-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to reduce the irreversible capacity and enhance the cycling life of the natural graphite anode of lithium ion batteries, a novel modification method was proposed by encapsulation with an ionically conductive co-polymer on the surface of natural graphite particles via radiation-initiated polymerization. The encapsulated graphite shows great improvement in electrochemical performance such as initial coulombic efficiency and cycleability compared with the original natural graphite. Raman spectroscopy indicates that encapsulation with an ionic conductive polymer can depress the structural changes caused by the cointercalation of solvent molecules. Stable electrode impedance during the repeated cycling is revealed by impedance spectra for encapsulated graphite. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 23 条
[1]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[2]   New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J].
Aurbach, D ;
Markovsky, B ;
Levi, MD ;
Levi, E ;
Schechter, A ;
Moshkovich, M ;
Cohen, Y .
JOURNAL OF POWER SOURCES, 1999, 81 :95-111
[3]   A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries [J].
Bar-Tow, D ;
Peled, E ;
Burstein, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :824-832
[4]   Effect of low-temperature conditions on passive layer growth on Li intercalation materials - In situ impedance study [J].
Barsoukov, E ;
Kim, JH ;
Kim, JH ;
Yoon, CO ;
Lee, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (08) :2711-2717
[5]   XPS studies of graphite electrode materials for lithium ion batteries [J].
Blyth, RIR ;
Buqa, H ;
Netzer, FP ;
Ramsey, MG ;
Besenhard, JO ;
Golob, P ;
Winter, M .
APPLIED SURFACE SCIENCE, 2000, 167 (1-2) :99-106
[6]   Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons [J].
Chang, YC ;
Sohn, HJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :50-58
[7]   Origin of graphite exfoliation - An investigation of the important role of solvent cointercalation [J].
Chung, GC ;
Kim, HJ ;
Yu, SI ;
Jun, SH ;
Choi, JW ;
Kim, MH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (12) :4391-4398
[8]   Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure [J].
Gnanaraj, JS ;
Levi, MD ;
Levi, E ;
Salitra, G ;
Aurbach, D ;
Fischer, JE ;
Claye, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (06) :A525-A536
[9]   Effect of graphite crystal structure on lithium electrochemical intercalation [J].
Guerin, K ;
Fevrier-Bouvier, A ;
Flandrois, S ;
Couzi, M ;
Simon, B ;
Biensan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (10) :3660-3665
[10]   In situ Raman studies of graphite surface structures during lithium electrochemical intercalation [J].
Huang, WW ;
Frech, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) :765-770