Infrared (IR) and Raman spectroscopy are emerging biophotonic tools to recognize various diseases. The current review gives an overview of the experimental techniques, data-classification algorithms and applications to assess soft tissues, hard tissues and body fluids. The methodology section presents the principles to combine vibrational spectroscopy with microscopy, lateral information and fiber-optic probes. A crucial step is the classification of spectral data by a variety of algorithms. We discuss unsupervised algorithms such as a cluster analysis or principal component analysis and supervised algorithms such as linear discriminant analysis, soft independent modeling of class analogies, artificial neural networks support vector machines, Bayesian classification, partial least-squares regression and ensemble methods. The selected topics include tumors of epithelial tissue, brain tumors, prion diseases, bone diseases, atherosclerosis, kidney stones and gallstones, skin tumors, diabetes and osteoarthritis. A photomicrograph of a histopathologically stained murine skin tissue section (left) is compared with a color coded FTIR image of an unstained tissue section (right). the colors allow distinguishing tumor (red, yellow, organ) and non-tumor portions.