Local Asymptotic Normality for Finite Dimensional Quantum Systems

被引:91
作者
Kahn, Jonas [1 ]
Guta, Madalin [2 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
STATISTICAL INFERENCE; STATES; INFORMATION;
D O I
10.1007/s00220-009-0787-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Previous results on local asymptotic normality (LAN) for qubits [16,19] are extended to quantum systems of arbitrary finite dimension d. LAN means that the quantum statistical model consisting of n identically prepared d-dimensional systems with joint state rho(circle times n) converges as n -> infinity to a statistical model consisting of classical and quantum Gaussian variables with fixed and known covariance matrix, and unknown means related to the parameters of the density matrix rho. Remarkably, the limit model splits into a product of a classical Gaussian with mean equal to the diagonal parameters, and independent harmonic oscillators prepared in thermal equilibrium states displaced by an amount proportional to the off-diagonal elements. As in the qubits case [16], LAN is the main ingredient in devising a general two step adaptive procedure for the optimal estimation of completely unknown d-dimensional quantum states. This measurement strategy shall be described in a forthcoming paper [18].
引用
收藏
页码:597 / 652
页数:56
相关论文
共 48 条
[21]   Optimal estimation of qubit states with continuous time measurements [J].
Guta, Madalin ;
Janssens, Bas ;
Kahn, Jonas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (01) :127-160
[22]   Local asymptotic normality for qubit states [J].
Guta, Madalin ;
Kahn, Jonas .
PHYSICAL REVIEW A, 2006, 73 (05)
[23]   Local asymptotic normality in quantum statistics [J].
Guta, Madalin ;
Jencova, Anna .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 276 (02) :341-379
[24]   Self-learning estimation of quantum states [J].
Hannemann, T ;
Reiss, D ;
Balzer, C ;
Neuhauser, W ;
Toschek, PE ;
Wunderlich, C .
PHYSICAL REVIEW A, 2002, 65 (05) :4
[25]   Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation [J].
Hayashi, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (36) :7689-7727
[26]  
HAYASHI M, 2006, ASYMPTOTIC PERFORMAN
[27]  
Hayashi M., 2006, Quantum Information
[28]  
HAYASHI M, 2003, B MATH SOC JAPAN, V55, P368
[29]  
HAYASHI M, 2004, MAPHYSTO QUANTOP WOR
[30]  
Helstrom C. W., 1969, Journal of Statistical Physics, V1, P231, DOI 10.1007/BF01007479