Local Asymptotic Normality for Finite Dimensional Quantum Systems

被引:88
作者
Kahn, Jonas [1 ]
Guta, Madalin [2 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
STATISTICAL INFERENCE; STATES; INFORMATION;
D O I
10.1007/s00220-009-0787-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Previous results on local asymptotic normality (LAN) for qubits [16,19] are extended to quantum systems of arbitrary finite dimension d. LAN means that the quantum statistical model consisting of n identically prepared d-dimensional systems with joint state rho(circle times n) converges as n -> infinity to a statistical model consisting of classical and quantum Gaussian variables with fixed and known covariance matrix, and unknown means related to the parameters of the density matrix rho. Remarkably, the limit model splits into a product of a classical Gaussian with mean equal to the diagonal parameters, and independent harmonic oscillators prepared in thermal equilibrium states displaced by an amount proportional to the off-diagonal elements. As in the qubits case [16], LAN is the main ingredient in devising a general two step adaptive procedure for the optimal estimation of completely unknown d-dimensional quantum states. This measurement strategy shall be described in a forthcoming paper [18].
引用
收藏
页码:597 / 652
页数:56
相关论文
共 48 条
[1]  
[Anonymous], 1998, ASYMPTOTIC STAT, DOI DOI 10.1017/CBO9780511802256
[2]  
[Anonymous], 1950, STAT DECISION FUNCTI
[3]  
[Anonymous], 1998, Representations and Invariants of the Classical Groups
[4]  
[Anonymous], 2005, P ERATO WORKSHOP QUA
[5]  
[Anonymous], 1990, An invitation to the algebra of the canonical commutation relation
[6]   Adaptive homodyne measurement of optical phase [J].
Armen, MA ;
Au, JK ;
Stockton, JK ;
Doherty, AC ;
Mabuchi, H .
PHYSICAL REVIEW LETTERS, 2002, 89 (13)
[7]   An invitation to quantum tomography [J].
Artiles, LM ;
Gill, RD ;
Guta, MI .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :109-134
[8]   Asymptotic error rates in quantum hypothesis testing [J].
Audenaert, K. M. R. ;
Nussbaum, M. ;
Szkola, A. ;
Verstraete, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :251-283
[9]   Optimal full estimation of qubit mixed states -: art. no. 032301 [J].
Bagan, E ;
Ballester, MA ;
Gill, RD ;
Monras, A ;
Muñoz-Tapia, R .
PHYSICAL REVIEW A, 2006, 73 (03) :1-18
[10]   Optimal scheme for estimating a pure qubit state via local measurements -: art. no. 277904 [J].
Bagan, E ;
Baig, M ;
Muñoz-Tapia, R .
PHYSICAL REVIEW LETTERS, 2002, 89 (27) :277904-277904