Application of adaptive multilevel splitting to high-dimensional dynamical systems

被引:11
|
作者
Baars, S. [1 ]
Castellana, D. [2 ]
Wubs, F. W. [1 ]
Dijkstra, H. A. [2 ,3 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, POB 407, NL-9700 AK Groningen, Netherlands
[2] Univ Utrecht, Dept Phys, Inst Marine & Atmospher Res Utrecht, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
[3] Univ Utrecht, Ctr Complex Syst Studies, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands
关键词
Rare transitions; Multilevel splitting; Model order reduction; Stochastic dynamical systems; Ocean circulation; MODEL; DECOMPOSITION; ALGORITHMS;
D O I
10.1016/j.jcp.2020.109876
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Stochastic nonlinear dynamical systems can undergo rapid transitions relative to the change in their forcing, for example due to the occurrence of multiple equilibrium solutions for a specific interval of parameters. In this paper, we modify one of the methods developed to compute probabilities of such transitions, Trajectory-Adaptive Multilevel Sampling (TAMS), to be able to apply it to high-dimensional systems. The key innovation is a projected time-stepping approach, which leads to a strong reduction in computational costs, in particular memory usage. The performance of this new implementation of TAMS is studied through an example of the collapse of the Atlantic Ocean Circulation. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Chaos in high-dimensional dissipative dynamical systems
    Iaroslav Ispolatov
    Vaibhav Madhok
    Sebastian Allende
    Michael Doebeli
    Scientific Reports, 5
  • [2] Chaos in high-dimensional dissipative dynamical systems
    Ispolatov, Iaroslav
    Madhok, Vaibhav
    Allende, Sebastian
    Doebeli, Michael
    SCIENTIFIC REPORTS, 2015, 5
  • [3] Transition to high-dimensional chaos in nonsmooth dynamical systems
    Du, Ru-Hai
    Qu, Shi-Xian
    Lai, Ying-Cheng
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [4] HIGH-DIMENSIONAL CHAOS IN DISSIPATIVE AND DRIVEN DYNAMICAL SYSTEMS
    Musielak, Z. E.
    Musielak, D. E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (09): : 2823 - 2869
  • [5] HIGH-DIMENSIONAL CHAOS IN DELAYED DYNAMICAL-SYSTEMS
    LEPRI, S
    GIACOMELLI, G
    POLITI, A
    ARECCHI, FT
    PHYSICA D, 1994, 70 (03): : 235 - 249
  • [6] Structural stability and hyperbolicity violation in high-dimensional dynamical systems
    Albers, D. J.
    Sprott, J. C.
    NONLINEARITY, 2006, 19 (08) : 1801 - 1847
  • [7] Bifurcations and persistence of equilibria in high-dimensional lattice dynamical systems
    Qin, WX
    Chen, YH
    NONLINEARITY, 2004, 17 (02) : 519 - 539
  • [8] Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems
    Farazmand, Mohammad
    Sapsis, Themistoklis P.
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [9] Adaptive quantum tomography of high-dimensional bipartite systems
    Struchalin, G., I
    Kovlakov, E., V
    Straupe, S. S.
    Kulik, S. P.
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [10] Computing best transition pathways in high-dimensional dynamical systems:: Application to the αL ⇆ β ⇆ αR transitions in octaalanine
    Noe, Frank
    Oswald, Marcus
    Reinelt, Gerhard
    Fischer, Stefan
    Smith, Jeremy C.
    MULTISCALE MODELING & SIMULATION, 2006, 5 (02): : 393 - 419