Sufficient conditions for the spectrality of self-affine measures with prime determinant

被引:9
作者
Li, Jian-Lin [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
iterated function system; self-affine measure; spectrality; digit set; DIGIT SETS; MATRICES; TILES;
D O I
10.4064/sm220-1-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu(M,D) be a self-affine measure associated with an expanding matrix M and a finite digit set D. We study the spectrality of mu(M,D) when vertical bar det(M)vertical bar = vertical bar D vertical bar = p is a prime. We obtain several new sufficient conditions on M and D for mu(M,D) to be a spectral measure with lattice spectrum. As an application, we present some properties of the digit sets of integral self-affine tiles, which are connected with a conjecture of Lagarias and Wang.
引用
收藏
页码:73 / 86
页数:14
相关论文
共 16 条
[1]  
[Anonymous], 1999, Advances in Wavelets
[2]  
[Anonymous], 1992, Contemp. Math.
[4]  
Dutkay DE, 2008, CONTEMP MATH, V464, P75
[5]   Fourier frequencies in affine iterated function systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 247 (01) :110-137
[6]   Probability and Fourier Duality for Affine Iterated Function Systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
ACTA APPLICANDAE MATHEMATICAE, 2009, 107 (1-3) :293-311
[7]  
Fuglede B., 1974, Journal of Functional Analysis, V16, P101, DOI 10.1016/0022-1236(74)90072-X
[8]   Characterization of tile digit sets with prime determinants [J].
He, XG ;
Lau, KS .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (03) :159-173
[9]   Classification of integral expanding matrices and self-affine tiles [J].
Kirat, I ;
Lau, KS .
DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (01) :49-73
[10]   Haar bases for L2(Rn) and algebraic number theory (vol 57, pg 181, 1996) [J].
Lagarias, JC ;
Wang, Y .
JOURNAL OF NUMBER THEORY, 1999, 76 (02) :330-336