FIRST-ORDER SYSTEM LEAST-SQUARES FOR INTERFACE PROBLEMS

被引:2
作者
Bertrand, Fleurianne [1 ]
机构
[1] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
关键词
first-order system least-squares; interface conditions; mixed finite element method; Stokes; incompressible Newtonian flow; parametric Raviart-Thomas element; RAVIART-THOMAS ELEMENTS; CURVED BOUNDARIES; FINITE-ELEMENTS; LINEAR ELASTICITY; STOKES EQUATIONS; FLOW; DOMAINS;
D O I
10.1137/16M1105827
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The two-phase flow problem with incompressible flow in the subdomains is studied in this paper. The Stokes flow problems are treated as first-order systems, involving stress and velocity and using the L-2 norm to define a least-squares functional. A combination of H(div)-conforming Raviart-Thomas and standard H-1-conforming elements is used for the discretization. The interface conditions are directly in the H (div)-conforming finite element space. The homogeneous least-squares functional is shown to be equivalent to an appropriate norm allowing the use of standard finite element approximation estimates. It also establishes the fact that the local evaluation of the least-squares functional itself constitutes an a posteriori error estimator to be used for adaptive refinement strategies.
引用
收藏
页码:1711 / 1730
页数:20
相关论文
共 26 条
  • [1] A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY
    ARNOLD, DN
    DOUGLAS, J
    GUPTA, CP
    [J]. NUMERISCHE MATHEMATIK, 1984, 45 (01) : 1 - 22
  • [2] DEV-DIV- AND DEVSYM-DEVCURL-INEQUALITIES FOR INCOMPATIBLE SQUARE TENSOR FIELDS WITH MIXED BOUNDARY CONDITIONS
    Bauer, Sebastian
    Neff, Patrizio
    Pauly, Dirk
    Starke, Gerhard
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2016, 22 (01) : 112 - 133
  • [3] Bertrand F., 2015, EQ DER PART LEUR APP, P185
  • [4] Bertrand F., 2018, LECT NOTES COMPUT SC
  • [5] PARAMETRIC RAVIART-THOMAS ELEMENTS FOR MIXED METHODS ON DOMAINS WITH CURVED SURFACES
    Bertrand, Fleurianne
    Starke, Gerhard
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3648 - 3667
  • [6] FIRST-ORDER SYSTEM LEAST SQUARES ON CURVED BOUNDARIES: HIGHER-ORDER RAVIART-THOMAS ELEMENTS
    Bertrand, Fleurianne
    Unzenmaier, Steffen M.
    Starke, Gerhard
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 3165 - 3180
  • [7] FIRST-ORDER SYSTEM LEAST SQUARES ON CURVED BOUNDARIES: LOWEST-ORDER RAVIART-THOMAS ELEMENTS
    Bertrand, Fleurianne
    Muenzenmaier, Steffen
    Starke, Gerhard
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 880 - 894
  • [8] Bochev PB, 2009, APPL MATH SCI, V166, P3, DOI 10.1007/b13382_1
  • [9] ANALYSIS OF LEAST-SQUARES FINITE-ELEMENT METHODS FOR THE STOKES EQUATIONS
    BOCHEV, PB
    GUNZBURGER, MD
    [J]. MATHEMATICS OF COMPUTATION, 1994, 63 (208) : 479 - 506
  • [10] BOFFI D., 2013, MIXED FINITE ELEMENT, V44