Monoidal categories of comodules for coquasi Hopf algebras and Radford's formula

被引:0
作者
Ferrer Santos, Walter [1 ]
Franco, Ignacio Lopez [2 ]
机构
[1] Univ Republica, Fac Ciencias, Igua 4225, Montevideo 11400, Uruguay
[2] Ctr Math Sci, Cambridge CB3 0WB, England
来源
ALGEBRAS, REPRESENTATIONS AND APPLICATIONS | 2009年 / 483卷
关键词
INTEGRALS; FINITE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the basic monoidal properties of the category of Hopf modules for a coquasi Hopf algebra H. In particular we discuss the so called fundamental theorem that establishes a monoidal equivalence between the category of comodules and the category of Hopf modules. We present a categorical proof of Radford's S' formula for the case of a finite dimensional coquasi Hopf algebra, by establishing a monoidal isomorphism between certain double dual functors.
引用
收藏
页码:107 / +
页数:3
相关论文
共 28 条
  • [1] Radford's S4 formula for co-Frobenius Hopf algebras
    Beattie, Margaret
    Bulacu, Daniel
    Torrecillas, Blas
    [J]. JOURNAL OF ALGEBRA, 2007, 307 (01) : 330 - 342
  • [2] Benabou J., 1967, REPORTS MIDWEST CATE, V47, P1
  • [3] Integrals for braided Hopf algebras
    Bespalov, Y
    Kerler, T
    Lyubashenko, V
    Turaev, V
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 148 (02) : 113 - 164
  • [4] Integrals for (dual) quasi-Hopf algebras. Applications
    Bulacu, D
    Caenepeel, S
    [J]. JOURNAL OF ALGEBRA, 2003, 266 (02) : 552 - 583
  • [5] Deligne P., 1990, Birkhauser, V87, P111, DOI DOI 10.1007/978-0-8176-4575-53
  • [6] DOI Y, 2000, NEW TRENDS HOPF ALGE
  • [7] Drinfeld V. G., 1990, Leningrad Math. J., V1, P1419
  • [8] ETINGOF P, 2004, I MATH RES NOT, V54, P2915
  • [9] FRANCO IL, HOPF MODULES AUTONOM
  • [10] HAUSSER F, ARXIVMATHQA9904164