Classifying the clique-width of H-free bipartite graphs

被引:21
作者
Dabrowski, Konrad K. [1 ]
Paulusma, Daniel [1 ]
机构
[1] Univ Durham, Sch Engn & Comp Sci, Sci Labs, S Rd, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Clique-width; Bipartite graph; Graph class; CO-GEM-FREE; SET;
D O I
10.1016/j.dam.2015.06.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a bipartite graph, and let H be a bipartite graph with a fixed bipartition (B-H, W-H). We consider three different, natural ways of forbidding H as an induced subgraph in G. First, G is H-free if it does not contain H as an induced subgraph. Second, G is strongly H-free if no bipartition of G contains an induced copy of H in a way that respects the bipartition of H. Third, G is weakly H-free if G has at least one bipartition that does not contain an induced copy of H in a way that respects the bipartition of H. Lozin and Volz characterized all bipartite graphs H for which the class of strongly H-free bipartite graphs has bounded clique-width. We extend their result by giving complete classifications for the other two variants of H-freeness. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 28 条
[11]  
Brandstädt A, 2006, DISCRETE MATH THEOR, V8, P173
[12]   Clique-width for 4-vertex forbidden subgraphs [J].
Brandstaedt, Andreas ;
Engelfriet, Joost ;
Le, Hoang-Oanh ;
Lozin, Vadim V. .
THEORY OF COMPUTING SYSTEMS, 2006, 39 (04) :561-590
[13]   Linear time solvable optimization problems on graphs of bounded clique-width [J].
Courcelle, B ;
Makowsky, JA ;
Rotics, U .
THEORY OF COMPUTING SYSTEMS, 2000, 33 (02) :125-150
[14]   Upper bounds to the clique width of graphs [J].
Courcelle, B ;
Olariu, S .
DISCRETE APPLIED MATHEMATICS, 2000, 101 (1-3) :77-114
[15]  
Dabrowski Konrad Kazimierz, 2015, Language and Automata Theory and Applications. 9th International Conference, LATA 2015. Proceedings: LNCS 8977, P676, DOI 10.1007/978-3-319-15579-1_53
[16]   Clique-Width of Graph Classes Defined by Two Forbidden Induced Subgraphs [J].
Dabrowski, Konrad K. ;
Paulusma, Daniel .
ALGORITHMS AND COMPLEXITY (CIAC 2015), 2015, 9079 :167-181
[17]   Colouring of graphs with Ramsey-type forbidden subgraphs [J].
Dabrowski, Konrad K. ;
Golovach, Petr A. ;
Paulusma, Daniel .
THEORETICAL COMPUTER SCIENCE, 2014, 522 :34-43
[18]  
Dabrowski KK, 2014, LECT NOTES COMPUT SC, V8591, P489, DOI 10.1007/978-3-319-08783-2_42
[19]  
Gurski F., 2007, CORR
[20]   Characterising the linear clique-width of a class of graphs by forbidden induced subgraphs [J].
Heggernes, Pinar ;
Meister, Daniel ;
Papadopoulos, Charis .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (06) :888-901