Applications of Artificial Neural Networks in Optical Performance Monitoring

被引:61
作者
Wu, Xiaoxia [1 ]
Jargon, Jeffrey A. [2 ]
Skoog, Ronald A. [3 ]
Paraschis, Loukas [4 ]
Willner, Alan E. [1 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Natl Inst Stand & Technol, Dept Commerce, Boulder, CO 80305 USA
[3] Telcordia Technol Inc, Opt Networking Res, Red Bank, NJ 07701 USA
[4] Cisco, San Jose, CA 95134 USA
关键词
Neural networks; optical fiber communication; optical performance monitoring; phase modulation; EYE-DIAGRAM; RF;
D O I
10.1109/JLT.2009.2024435
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Applications using artificial neural networks (ANNs) for optical performance monitoring (OPM) are proposed and demonstrated. Simultaneous identification of optical signal-to-noise-ratio (OSNR), chromatic dispersion ( CD), and polarization-mode-dispersion (PMD) from eye-diagram parameters is shown via simulation in both 40 Gb/son-off keying ( OOK) and differential phase-shift-keying (DPSK) systems. Experimental verification is performed to simultaneously identify OSNR and CD. We then extend this technique to simultaneously identify accumulated fiber nonlinearity, OSNR, CD, and PMD from eye-diagram and eye-histogram parameters in a 3-channel 40 Gb/s DPSK wave-length-division multiplexing (WDM) system. Furthermore, we propose using this ANN approach to monitor impairment causing changes from a baseline. Simultaneous identification of accumulated fiber nonlinearity, OSNR, CD, and PMD causing changes from a baseline by use of the eye-diagram and eye-histogram parameters is obtained and high correlation coefficients are achieved with various baselines. Finally, the ANNs are also shown for simultaneous identification of in-phase/quadrature (I/Q) data misalignment and data/carver misalignment in return-to-zero differential quadrature phase shift keying (RZ-DQPSK) transmitters.
引用
收藏
页码:3580 / 3589
页数:10
相关论文
共 34 条
  • [1] Anderson T. B., 2009, C OPT FIB COMM OFC 0
  • [2] Anderson TB, 2007, EUR C OPT COMM ECOC
  • [3] [Anonymous], NEURAL NETWORKS RF M
  • [4] *CARL U DEP EL QJ, 2004, NEUROMODELER VER 1 5
  • [5] Chung YC, 2008, EUR C OPT COMM ECOC
  • [6] Devabhaktuni VK, 2001, INT J RF MICROW C E, V11, P4, DOI 10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO
  • [7] 2-I
  • [8] Dods SD, 2006, C OPT FIB COMM OFC 0
  • [9] Dods SD, 2007, C OPT FIB COMM OFC 0
  • [10] Gerstel O., 2009, OPT FIB COMM OFC NAT