A hyperchaotic system from a chaotic system with one saddle and two stable node-foci

被引:33
作者
Yang, Qigui [1 ]
Liu, Yongjian [1 ,2 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
[2] Yulin Normal Univ, Dept Math & Computat Sci, Yulin 537000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperchaos; Chaos; Ultimate boundedness; Lyapunov exponents; Bifurcation; POSITIVELY INVARIANT SET; LORENZ-SYSTEM;
D O I
10.1016/j.jmaa.2009.06.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a 4D new hyperchaotic system which is constructed by a linear controller to a 3D new chaotic system with one saddle and two stable node-foci. Some complex dynamical behaviors such as ultimate boundedness, chaos and hyperchaos of the simple 4D autonomous system are investigated and analyzed. The corresponding bounded hyperchaotic and chaotic attractor is first numerically verified through investigating phase trajectories. Lyapunove exponents. bifurcation path, analysis of power spectrum and Poincare projections. Finally. two complete mathematical characterizations for 4D Hopf bifurcation are rigorous derived and studied. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:293 / 306
页数:14
相关论文
共 15 条
[1]  
[Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
[2]  
Guckenheimer J., 2013, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
[3]  
Hassard B.D., 1982, THEORY APPL HOPF BIF
[4]   Bounds for attractors and the existence of homoclinic orbits in the Lorenz system [J].
Leonov, GA .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (01) :19-32
[5]   LOCALIZING THE ATTRACTOR OF THE LORENZ-SYSTEM [J].
LEONOV, GA ;
BUNIN, AI ;
KOKSCH, N .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (12) :649-656
[6]   Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system [J].
Li, Damei ;
Lu, Jun-an ;
Wu, Xiaoqun ;
Chen, Guanrong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :844-853
[7]   Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system [J].
Li, Damei ;
Wu, Xiaoqun ;
Lu, Jun-an .
CHAOS SOLITONS & FRACTALS, 2009, 39 (03) :1290-1296
[8]   Controlling a unified chaotic system to hyperchaotic [J].
Li, YX ;
Chen, GR ;
Tang, WKS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2005, 52 (04) :204-207
[9]   On a new hyperchaotic system [J].
Qi, Guoyuan ;
van Wyk, Michael Antonie ;
van Wyk, Barend Jacobus ;
Chen, Guanrong .
PHYSICS LETTERS A, 2008, 372 (02) :124-136
[10]   EQUATION FOR HYPERCHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1979, 71 (2-3) :155-157