Critical parameters for non-hermitian Hamiltonians

被引:5
作者
Fernandez, Francisco M. [1 ]
Garcia, Javier [1 ]
机构
[1] UNLP, CCT La Plata CONICET, INIFTA, Div Quim Teor, RA-1900 La Plata, Buenos Aires, Argentina
关键词
PT symmetry; Non-hermitian Hamiltonians; Critical parameters; Exceptional points; Diagonalization method; EXCEPTIONAL POINTS; SQUARE-WELL; SPONTANEOUS BREAKDOWN; SYMMETRY; OPERATOR;
D O I
10.1016/j.amc.2014.08.083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We calculate accurate critical parameters for a class of non-hermitian Hamiltonians by means of the diagonalization method. We study three one-dimensional models and two perturbed rigid rotors with PT symmetry. One of the latter models illustrates the necessity of a more general condition for the appearance of real eigenvalues that we also discuss here. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 19 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   PT phase transition in multidimensional quantum systems [J].
Bender, Carl M. ;
Weir, David J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (42)
[3]  
Bender CM, 2011, INT J THEOR PHYS, V50, P955, DOI 10.1007/s10773-010-0511-2
[4]   The C operator in PT-symmetric quantum theories [J].
Bender, CM ;
Brod, J ;
Refig, A ;
Reuter, ME .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43) :10139-10165
[5]   Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics [J].
Bender, CM ;
Meisinger, PN ;
Wang, QH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :1973-1983
[6]   Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians [J].
Bender, CM ;
Berry, M ;
Meisinger, PN ;
Savage, VM ;
Simsek, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (06) :L31-L36
[7]   Spectral analysis of the complex cubic oscillator [J].
Delabaere, E ;
Trinh, DT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48) :8771-8796
[8]  
Fernandez FranciscoM, 2001, INTRO PERTURBATION T, VFirst
[9]   Orthogonal polynomial projection quantization: a new Hill determinant method [J].
Handy, C. R. ;
Vrinceanu, D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (13)
[10]   Spectral bounds for the PT-breaking Hamiltonian p2+x4+iax [J].
Handy, CR ;
Wang, XQ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (45) :11513-11532