The Strong Maximal Rank conjecture and higher rank Brill-Noether theory

被引:1
作者
Cotterill, Ethan [1 ]
Alonso Gonzalo, Adrian [2 ]
Zhang, Naizhen [3 ]
机构
[1] Univ Fed Fluminense, Inst Matemat, Rua Prof Waldemar de Freitas S-N,Campus Gragoata, BR-24210201 Niteroi, RJ, Brazil
[2] Univ Autonoma Barcelona, Dept Math, Barcelona 08193, Spain
[3] Leibniz Univ Hannover, Inst Differentialgeometrie, Welfengarten 1, D-30167 Hannover, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2021年 / 104卷 / 01期
关键词
VECTOR-BUNDLES; MAP; DIVISORS; SUMS; LOCI;
D O I
10.1112/jlms.12427
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we compute the cohomology class of certain 'special maximal-rank loci' originally defined by Aprodu and Farkas. By showing that such classes are non-zero, we are able to verify the non-emptiness portion of the Strong Maximal Rank Conjecture in a wide range of cases. As an application, we obtain new evidence for the existence portion of a well-known conjecture due to Bertram, Feinberg and independently Mukai in higher rank Brill-Noether theory.
引用
收藏
页码:169 / 205
页数:37
相关论文
共 36 条
[1]  
Bertram A., 1998, LECT NOTES PURE APPL, V200, P259
[2]   Rank two vector bundles with canonical determinant [J].
Bigas, MTI .
MATHEMATISCHE NACHRICHTEN, 2004, 265 :100-106
[3]  
Ciliberto C, 2015, REV ROUM MATH PURES, V60, P201
[4]  
Cornalba M., 1985, GEOMETRY ALGEBRAIC C, V267
[5]  
Farkas G., FACETS ALGEBRAIC GEO
[6]   Higher ramification and varieties of secant divisors on the generic curve [J].
Farkas, Gavril .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 :418-440
[7]   HIGHER RANK BRILL-NOETHER THEORY ON SECTIONS OF K3 SURFACES [J].
Farkas, Gavril ;
Ortega, Angela .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (07)
[8]  
Farkas G, 2011, PURE APPL MATH Q, V7, P1265
[9]  
Farkas G, 2009, AM J MATH, V131, P819
[10]  
Fulton W., 2013, Representation theory: a first course, V129