A light CNN for detecting COVID-19 from CT scans of the chest

被引:150
|
作者
Polsinelli, Matteo [1 ]
Cinque, Luigi [2 ]
Placidi, Giuseppe [1 ]
机构
[1] Univ Aquila, Dept Life Hlth & Environm Sci, Lab A2VI, Via Vetoio, I-67100 Laquila, Italy
[2] Sapienza Univ, Dept Comp Sci, Via Salaria, Rome, Italy
关键词
Deep Learning; CNN; Pattern Recognition; COVID-19;
D O I
10.1016/j.patrec.2020.10.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computer Tomography (CT) imaging of the chest is a valid diagnosis tool to detect COVID-19 promptly and to control the spread of the disease. In this work we propose a light Convolutional Neural Network (CNN) design, based on the model of the SqueezeNet, for the efficient discrimination of COVID-19 CT images with respect to other community-acquired pneumonia and/or healthy CT images. The architecture allows to an accuracy of 85.03% with an improvement of about 3.2% in the first dataset arrangement and of about 2.1% in the second dataset arrangement. The obtained gain, though of low entity, can be really important in medical diagnosis and, in particular, for Covid-19 scenario. Also the average classification time on a high-end workstation, 1.25 s, is very competitive with respect to that of more complex CNN designs, 13.41 s, witch require pre-processing. The proposed CNN can be executed on medium-end laptop without GPU acceleration in 7.81 s: this is impossible for methods requiring GPU acceleration. The performance of the method can be further improved with efficient pre-processing strategies for witch GPU acceleration is not necessary. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [1] COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans
    Alshazly, Hammam
    Linse, Christoph
    Abdalla, Mohamed
    Barth, Erhardt
    Martinetz, Thomas
    PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 40
  • [2] COVID-19 Diagnosis from Chest CT Scans: A Weakly Supervised CNN-LSTM Approach
    Kara, Mustafa
    Ozturk, Zeynep
    Akpek, Sergin
    Turupcu, Aysegul
    AI, 2021, 2 (03) : 330 - 341
  • [3] LiMS-Net: A Lightweight Multi-Scale CNN for COVID-19 Detection from Chest CT Scans
    Joshi, Amogh Manoj
    Nayak, Deepak Ranjan
    Das, Dibyasundar
    Zhang, Yudong
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2023, 14 (01)
  • [4] AI detection of mild COVID-19 pneumonia from chest CT scans
    Yao, Jin-Cao
    Wang, Tao
    Hou, Guang-Hua
    Ou, Di
    Li, Wei
    Zhu, Qiao-Dan
    Chen, Wen-Cong
    Yang, Chen
    Wang, Li-Jing
    Wang, Li-Ping
    Fan, Lin-Yin
    Shi, Kai-Yuan
    Zhang, Jie
    Xu, Dong
    Li, Ya-Qing
    EUROPEAN RADIOLOGY, 2021, 31 (09) : 7192 - 7201
  • [5] AI detection of mild COVID-19 pneumonia from chest CT scans
    Jin-Cao Yao
    Tao Wang
    Guang-Hua Hou
    Di Ou
    Wei Li
    Qiao-Dan Zhu
    Wen-Cong Chen
    Chen Yang
    Li-Jing Wang
    Li-Ping Wang
    Lin-Yin Fan
    Kai-Yuan Shi
    Jie Zhang
    Dong Xu
    Ya-Qing Li
    European Radiology, 2021, 31 : 7192 - 7201
  • [6] Detection of COVID-19 from Chest CT Images Using CNN with MLP Hybrid Model
    Rajasekar, Sakthi Jaya Sundar
    Narayanan, Vasumathi
    Perumal, Varalakshmi
    PHEALTH 2021, 2021, 285 : 288 - 291
  • [7] Lung Parenchyma Segmentation Using Mask R-CNN in COVID-19 Chest CT Scans
    Llacho, Wilmer Alberto Pacheco
    Castro-Gutierrez, Eveling
    Tapia, Luis David Huallpa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (02) : 141 - 146
  • [8] A semi-supervised learning approach for COVID-19 detection from chest CT scans
    Zhang, Yong
    Su, Li
    Liu, Zhenxing
    Tan, Wei
    Jiang, Yinuo
    Cheng, Cheng
    NEUROCOMPUTING, 2022, 503 : 314 - 324
  • [9] Weakly-Supervised Network for Detection of COVID-19 in Chest CT Scans
    Mohammed, Ahmed
    Wang, Congcong
    Zhao, Meng
    Ullah, Mohib
    Naseem, Rabia
    Wang, Hao
    Pedersen, Marius
    Cheikh, Faouzi Alaya
    IEEE ACCESS, 2020, 8 : 155987 - 156000
  • [10] Automated Detection of Covid-19 from Chest X-ray scans using an optimized CNN architecture
    Pathan, Sameena
    Siddalingaswamy, P. C.
    Ali, Tanweer
    APPLIED SOFT COMPUTING, 2021, 104