On the G-compactifications of the rational numbers

被引:4
作者
van Mill, Jan [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Fac Sci, NL-1081 HV Amsterdam, Netherlands
来源
MONATSHEFTE FUR MATHEMATIK | 2009年 / 157卷 / 03期
关键词
G-compactification; Rational numbers; Countable dense homogeneous; SPACE;
D O I
10.1007/s00605-008-0024-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any sufficiently homogeneous metrizable compactum X there is a Polish group G acting continuously on the space of rational numbers Q such that X is its unique G-compactification. This allows us to answer Problem 995 in the 'Open Problems in Topology II' book in the negative: there is a one-dimensional Polish group G acting transitively on Q for which the Hilbert cube is its unique G-completion.
引用
收藏
页码:257 / 266
页数:10
相关论文
共 17 条
[1]  
Bennett R., 1972, Fund. Math, V74, P189
[2]  
DEVRIES J, 1978, B ACAD POL SCI SMAP, V26, P275
[3]   Homeomorphism groups of manifolds and Erdos space [J].
Dijkstra, JJ ;
Van Mill, J .
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 10 :29-38
[4]   The dimension of the rational points in Hilbert space [J].
Erdos, P .
ANNALS OF MATHEMATICS, 1940, 41 :734-736
[5]  
Kozlov K. L., 2005, MAT ZAMETKI, V78, P695, DOI 10.4213/mzm2629
[6]  
Megrelishvili, 2007, OPEN PROBLEMS TOPOLO, VII, P423
[7]  
MEGRELISHVILI M, 1998, TOPOLOGY APPL, V86, P69
[8]  
Megrelishvili M., 1994, COMMENT MATH UNIV CA, V35, P539
[9]   A TIKHONOV G-SPACE NOT ADMITTING A COMPACT HAUSDORFF G-EXTENSION OR G-LINEARIZATION [J].
MEGRELISHVILI, MG .
RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (02) :177-178
[10]  
Sierpinski W., 1920, Fund. Math., V1, P11