Robust clustering of imprecise data

被引:43
作者
D'Urso, Pierpaolo [1 ]
De Giovanni, Livia [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Sociali & Econ, I-00185 Rome, Italy
[2] LUISS Guido Carli, Dipartimento Sci Polit, I-00197 Rome, Italy
关键词
Fuzzy k-Medoids clustering; Fuzzy data; Robust fuzzy clustering; Exponential distance; Noise cluster; Trimming; Chemical data; Ecotoxicological data; POSSIBILISTIC APPROACH; COMPONENT ANALYSIS; FUZZY EXTENSION; TIME ARRAYS; ALGORITHMS; NUMBERS; MODELS; CLASSIFICATION; IMPLEMENTATION; NOISE;
D O I
10.1016/j.chemolab.2014.05.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust fuzzy clustering models for fuzzy data are proposed. In particular, using a "Partitioning Around Medoids" (PAM) approach, first a timid robustification of fuzzy clustering for a general class of fuzzy data is proposed. Successively, we propose three robust fuzzy clustering models based on, respectively, the so-called metric, noise and trimmed approaches. The metric approach achieves its robustness with respect to outliers by taking into account a "robust" distance measure, the noise approach by introducing a noise cluster represented by a noise prototype, and the trimmed approach by trimming away a certain fraction of data units. A comparative simulation study and measures of misclassification and of robustness with respect to prototype detection in the presence of outliers have been developed. Several applications to chemometrical and benchmark data are also presented. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 80
页数:23
相关论文
共 82 条
[1]   Comparing Fuzzy, Probabilistic, and Possibilistic Partitions [J].
Anderson, Derek T. ;
Bezdek, James C. ;
Popescu, Mihail ;
Keller, James M. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (05) :906-918
[2]  
[Anonymous], 1988, Possibility Theory
[3]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
[4]   OVERLAPPING CLUSTERING - A NEW METHOD FOR PRODUCT POSITIONING [J].
ARABIE, P ;
CARROLL, JD ;
DESARBO, W ;
WIND, J .
JOURNAL OF MARKETING RESEARCH, 1981, 18 (03) :310-317
[5]   Analysis and efficient implementation of a linguistic fuzzy C-means [J].
Auephanwiriyakul, S ;
Keller, JM .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2002, 10 (05) :563-582
[6]   A possibilistic approach to clustering - Comments [J].
Barni, M ;
Cappellini, V ;
Mecocci, A .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1996, 4 (03) :393-396
[7]  
Butkiewicz BS, 2005, LECT NOTES COMPUT SC, V3528, P76
[8]   A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment [J].
Campello, R. J. G. B. .
PATTERN RECOGNITION LETTERS, 2007, 28 (07) :833-841
[9]   A fuzzy extension of the silhouette width criterion for cluster analysis [J].
Campello, R. J. G. B. ;
Hruschka, E. R. .
FUZZY SETS AND SYSTEMS, 2006, 157 (21) :2858-2875
[10]   Collaborative Fuzzy Clustering Algorithms: Some Refinements and Design Guidelines [J].
Coletta, Luiz F. S. ;
Vendramin, Lucas ;
Hruschka, Eduardo Raul ;
Campello, Ricardo J. G. B. ;
Pedrycz, Witold .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (03) :444-462