Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds

被引:6
作者
Tian, G [1 ]
Zhu, XH
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] MIT, Dept Math, Cambridge, MA 02139 USA
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 11期
关键词
D O I
10.1016/S0764-4442(00)88625-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new holomorphic invariant on any compact Kahler manifolds with positive first Chern class and nontrivial holomorphic vector fields, which contains the Futaki invariant as a special case. This invariant is shown to be an obstruction to the existence of Kahler-Ricci solitons. By solving a complex Monge-Ampere equation, we prove the uniqueness of Kahler-Ricci solitons. (C) 1999 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:991 / 995
页数:5
相关论文
共 12 条
[1]  
BANDO S, 1987, ADV STUDIES PURE MAT, V10
[2]  
Cao HD, 1996, ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY, P1
[3]  
Cao HD, 1997, J DIFFER GEOM, V45, P257
[4]   AN OBSTRUCTION TO THE EXISTENCE OF EINSTEIN KAHLER-METRICS [J].
FUTAKI, A .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :437-443
[5]  
HAMILTON RS, 1993, J DIFFER GEOM, V38, P1
[6]  
HAMILTON RS, 1995, SURVEYS DIFFERENTIAL, V2, P7
[7]   ON SOME TYPES OF TOPOLOGICAL GROUPS [J].
IWASAWA, K .
ANNALS OF MATHEMATICS, 1949, 50 (03) :507-558
[8]  
Koiso N., 1990, ADV STUD PURE MATH, V18-I, P327
[9]   Kahler-Einstein metrics with positive scalar curvature [J].
Tian, G .
INVENTIONES MATHEMATICAE, 1997, 130 (01) :1-37
[10]  
TIAN G, NEW HOLOMORPHIC INVA