Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds

被引:6
|
作者
Tian, G [1 ]
Zhu, XH
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] MIT, Dept Math, Cambridge, MA 02139 USA
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 11期
关键词
D O I
10.1016/S0764-4442(00)88625-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new holomorphic invariant on any compact Kahler manifolds with positive first Chern class and nontrivial holomorphic vector fields, which contains the Futaki invariant as a special case. This invariant is shown to be an obstruction to the existence of Kahler-Ricci solitons. By solving a complex Monge-Ampere equation, we prove the uniqueness of Kahler-Ricci solitons. (C) 1999 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:991 / 995
页数:5
相关论文
共 50 条
  • [1] Uniqueness of Kahler-Ricci solitons
    Tian, G
    Zhu, XH
    ACTA MATHEMATICA, 2000, 184 (02) : 271 - 305
  • [2] Special Kahler-Ricci potentials on compact Kahler manifolds
    Derdzinski, A.
    Maschler, G.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 593 : 73 - 116
  • [3] Cusp Kahler-Ricci flow on compact Kahler manifolds
    Liu, Jiawei
    Zhang, Xi
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 289 - 306
  • [4] Uniqueness of shrinking gradient Kahler-Ricci solitons on non-compact toric manifolds
    Cifarelli, Charles
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3746 - 3791
  • [5] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316
  • [6] A new holomorphic invariant and uniqueness of Kahler-Ricci solitons
    Tian, G
    Zhu, XH
    COMMENTARII MATHEMATICI HELVETICI, 2002, 77 (02) : 297 - 325
  • [7] Twisted and conical Kahler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    Zhang, Xi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2396 - 2421
  • [8] The moduli space of Fano manifolds with Kahler-Ricci solitons
    Inoue, Eiji
    ADVANCES IN MATHEMATICS, 2019, 357
  • [9] Fano Manifolds with Weak almost Kahler-Ricci Solitons
    Wang, Feng
    Zhu, Xiaohua
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (09) : 2437 - 2464
  • [10] COUPLED KAHLER-RICCI SOLITONS ON TORIC FANO MANIFOLDS
    Hultgren, Jakob
    ANALYSIS & PDE, 2019, 12 (08): : 2067 - 2094