Removable circuits in binary matroids

被引:4
作者
Goddyn, LA [1 ]
Jackson, B
机构
[1] Simon Fraser Univ, Dept Math & Stat, Burnaby, BC V6A 1S6, Canada
[2] Univ London Goldsmiths Coll, Dept Math & Comp Sci, London SE14 6NW, England
关键词
D O I
10.1017/S0963548399003934
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that, if M is a connected binary matroid of cogirth at least five which does not have both an F-7-minor and an F-7*-minor, then M has a circuit C such that M - C is connected and r(M - C) = r(M).
引用
收藏
页码:539 / 545
页数:7
相关论文
共 12 条
[1]  
FLEISCHNER H, 1985, J LOND MATH SOC, V31, P8
[2]   Removable circuits in multigraphs [J].
Goddyn, LA ;
vandenHeuvel, J ;
McGuinness, S .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :130-143
[3]  
Harary F., 1972, GRAPH THEORY
[4]  
JACKSON B, 1980, J LOND MATH SOC, V21, P385
[5]  
Lemos M, 1999, J GRAPH THEOR, V30, P51, DOI 10.1002/(SICI)1097-0118(199901)30:1<51::AID-JGT6>3.0.CO
[6]  
2-7
[7]  
Mader W., 1974, ABH MATH SEM HAMBURG, V42, P187
[8]  
Oxley J., 1993, MATROID THEORY
[10]   DECOMPOSITION OF REGULAR MATROIDS [J].
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (03) :305-359