PIECEWISE STRONGLY PROXIMAL ACTIONS, FREE BOUNDARIES AND THE NERETIN GROUPS

被引:1
作者
Caprace, Pierre-Emmanuel [1 ]
Le Boudec, Adrien [2 ]
Bon, Nicolas Matte [3 ]
机构
[1] UCLouvain, B-1348 Louvain La Neuve, Belgium
[2] UMPA ENS Lyon, Lyon, France
[3] Univ Lyon, ICJ, Lyon, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2022年 / 150卷 / 04期
关键词
Locally compact groups; strongly proximal actions; Chabauty space; confined subgroups; SIMPLICITY;
D O I
10.24033/bsmf.2861
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A closed subgroup H of a locally compact group G is confined if the closure of the conjugacy class of H in the Chabauty space of G does not contain the trivial subgroup. We establish a dynamical criterion on the action of a totally disconnected, locally compact group G on a compact space X ensuring that no relatively amenable subgroup of G can be confined. This property is equivalent to the fact that the action of G on its Furstenberg boundary is free. Our criterion applies to the Neretin groups. We deduce that each Neretin group has two inequivalent irreducible unitary representations that are weakly equivalent. This implies that the Neretin groups are not of type I, thereby answering a question of Y. Neretin.
引用
收藏
页码:773 / 795
页数:23
相关论文
共 43 条
  • [1] Amenable isometry groups of Hadamard spaces
    Adams, S
    Ballmann, W
    [J]. MATHEMATISCHE ANNALEN, 1998, 312 (01) : 183 - 195
  • [2] [Anonymous], 2018, NEW DIRECTIONS LOCAL, V447, P131
  • [3] ARIMOTO R, 2022, PROC AM MATH SOC SER, V9, P311
  • [4] Simple groups without lattices
    Bader, Uri
    Caprace, Pierre-Emmanuel
    Gelander, Tsachik
    Mozes, Shahar
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 55 - 67
  • [5] Bekka B, 2008, NEW MATH MONOGR, P1, DOI 10.1017/CBO9780511542749
  • [6] Bekka B, 2020, MATH SURVEYS MONOGRA, V250
  • [7] Boudec AL, 2020, Arxiv, DOI arXiv:2006.08677
  • [8] Bourbaki N, 1963, ELEMENTS MATH FASCIC, V1306
  • [9] C*-simplicity and the unique trace property for discrete groups
    Breuillard, Emmanuel
    Kalantar, Mehrdad
    Kennedy, Matthew
    Ozawa, Narutaka
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01): : 35 - 71
  • [10] Continuous bounded cohomology and applications to rigidity theory
    Burger, M
    Monod, N
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) : 219 - 280