Crossover Experiments Applied to Network Formation Reactions: Improved Strategies for Counting Elastically Inactive Molecular Defects in PEG Gels and Hyperbranched Polymers

被引:83
作者
Zhou, Huaxing [1 ]
Schoen, Eva-Maria [1 ,3 ]
Wang, Muzhou [2 ]
Glassman, Matthew J. [2 ]
Liu, Jenny [1 ]
Zhong, Mingjiang [1 ,2 ]
Diaz, David Diaz [3 ,4 ]
Olsen, Bradley D. [2 ]
Johnson, Jeremiah A. [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Univ Regensburg, Inst Organ Chem, Fak Chem & Pharm, D-93053 Regensburg, Germany
[4] IQAC CSIC, Barcelona 08034, Spain
基金
美国国家科学基金会;
关键词
MONTE-CARLO; MODEL NETWORKS; INTRAMOLECULAR REACTION; PROTEIN HYDROGELS; PRIMARY LOOPS; GELATION; NMR; LINKING;
D O I
10.1021/ja5042385
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular defects critically impact the properties of materials. Here we introduce a paradigm called "isotopic labeling disassembly spectrometry" (ILDaS) that facilitates unprecedented precise experimental correlations between elastically inactive network defects (dangling chains and primary loops) and network formation kinetics and precursor structure. ILDaS is inspired by classical crossover experiments, which are often used to interrogate whether a reaction mechanism proceeds via an inter- or intramolecular pathway. We show that if networks are designed from labeled bifunctional monomers that transfer their labels to multifunctional junctions upon network formation, then the extent of junction labeling correlates directly with the number of dangling chains and cyclic imperfections within the network. We demonstrate two complementary ILDaS approaches that enable defect measurements with short analysis times, low cost, and synthetic versatility applicable to a broad range of network materials including polydisperse polymer precursors. The results will spur new experimental and theoretical investigations into the interplay between polymer network structure and properties.
引用
收藏
页码:9464 / 9470
页数:7
相关论文
共 47 条
[1]   Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine-Norbornene Chemistry [J].
Alge, Daniel L. ;
Azagarsamy, Malar A. ;
Donohue, Dillon F. ;
Anseth, Kristi S. .
BIOMACROMOLECULES, 2013, 14 (04) :949-953
[2]   Polymers through Reshuffling of Trithiocarbonate Units [J].
Amamoto, Yoshifumi ;
Kamada, Jun ;
Otsuka, Hideyuki ;
Takahara, Atsushi ;
Matyjaszewski, Krzysztof .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1660-1663
[3]  
Anslyn E. V., 2006, MODERN PHYS ORGANIC
[4]  
Cail J. I., 2007, POLYM B, V58, p1S
[5]   REACTIONS OF TETRAZINES WITH UNSATURATED COMPOUNDS - A NEW SYNTHESIS OF PYRIDAZINES [J].
CARBONI, RA ;
LINDSEY, RV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1959, 81 (16) :4342-4346
[6]   A thermally re-mendable cross-linked polymeric material [J].
Chen, XX ;
Dam, MA ;
Ono, K ;
Mal, A ;
Shen, HB ;
Nutt, SR ;
Sheran, K ;
Wudl, F .
SCIENCE, 2002, 295 (5560) :1698-1702
[7]   Synthesis of Model Network Hydrogels via Tetrazine-Olefin Inverse Electron Demand Diels-Alder Cycloaddition [J].
Cok, Alexandra M. ;
Zhou, Huaxing ;
Johnson, Jeremiah A. .
MACROMOLECULAR SYMPOSIA, 2013, 329 (01) :108-112
[8]   Self-healing and thermoreversible rubber from supramolecular assembly [J].
Cordier, Philippe ;
Tournilhac, Francois ;
Soulie-Ziakovic, Corinne ;
Leibler, Ludwik .
NATURE, 2008, 451 (7181) :977-980
[9]   Monte-Carlo modelling of the formation, structure and properties of polymer networks [J].
Dutton, S ;
Stepto, RFT ;
Taylor, DJR .
ANGEWANDTE MAKROMOLEKULARE CHEMIE, 1996, 240 :39-57
[10]  
Flory P J., PRINCIPLES POLYM CHE