Phase diagram of the Kane-Mele-Coulomb model

被引:62
作者
Hohenadler, M. [1 ]
Toldin, F. Parisen [1 ]
Herbut, I. F. [2 ]
Assaad, F. F. [1 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[2] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 08期
关键词
FERMI-LIQUID BEHAVIOR; HONEYCOMB LATTICE; DIRAC FERMIONS; HUBBARD-MODEL; GRAPHENE; ELECTRONS; SYSTEMS;
D O I
10.1103/PhysRevB.90.085146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We determine the phase diagram of the Kane-Mele model with a long-range Coulomb interaction using an exact quantum Monte Carlo method. Long-range interactions are expected to play a role in honeycomb materials because the vanishing density of states in the semimetallic weak-coupling phase suppresses screening. According to our results, the Kane-Mele-Coulomb model supports the same phases as the Kane-Mele-Hubbard model. The nonlocal part of the interaction promotes short-range sublattice charge fluctuations, which compete with antiferromagnetic order driven by the onsite repulsion. Consequently, the critical interaction for the magnetic transition is significantly larger than for the purely local Hubbard repulsion. Our numerical data are consistent with SU(2) Gross-Neveu universality for the semimetal to antiferromagnet transition, and with 3D XY universality for the quantum spin Hall to antiferromagnet transition.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Phase structure of two-dimensional topological insulators by lattice strong-coupling expansion [J].
Araki, Yasufumi ;
Kimura, Taro .
PHYSICAL REVIEW B, 2013, 87 (20)
[2]   World-line and determinantal quantum Monte Carlo methods for spins, phonons and electrons [J].
Assaad, F. F. ;
Evertz, H. G. .
COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 :277-+
[3]   Topological Invariant and Quantum Spin Models from Magnetic π Fluxes in Correlated Topological Insulators [J].
Assaad, F. F. ;
Bercx, M. ;
Hohenadler, M. .
PHYSICAL REVIEW X, 2013, 3 (01)
[4]  
Assaad F. F., 2013, INSIDE, V11, P22
[5]   Pinning the Order: The Nature of Quantum Criticality in the Hubbard Model on Honeycomb Lattice [J].
Assaad, Fakher F. ;
Herbut, Igor F. .
PHYSICAL REVIEW X, 2013, 3 (03)
[6]   Theoretical estimates of the critical exponents of the superfluid transition in 4He by lattice methods [J].
Campostrini, Massimo ;
Hasenbusch, Martin ;
Pelissetto, Andrea ;
Vicari, Ettore .
PHYSICAL REVIEW B, 2006, 74 (14)
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Quantum critical behavior in three dimensional lattice Gross-Neveu models [J].
Chandrasekharan, Shailesh ;
Li, Anyi .
PHYSICAL REVIEW D, 2013, 88 (02)
[9]   Symmetry-Protected Topological Orders in Interacting Bosonic Systems [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Liu, Zheng-Xin ;
Wen, Xiao-Gang .
SCIENCE, 2012, 338 (6114) :1604-1606
[10]  
Clark B. K., ARXIV13050278