NONPARAMETRIC RANDOM EFFECTS FUNCTIONAL REGRESSION MODEL USING GAUSSIAN PROCESS PRIORS

被引:2
作者
Wang, Zhanfeng [1 ]
Ding, Hao [1 ]
Chen, Zimu [1 ]
Shi, Jian Qing [2 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Sch Management, Hefei, Anhui, Peoples R China
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne, Tyne & Wear, England
关键词
Functional linear model; function-on-function regression model; Gaussian process priors; nonlinear random effects; ON-FUNCTION REGRESSION; LINEAR-REGRESSION;
D O I
10.5705/ss.202018.0296
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For functional regression models with functional responses, we propose a nonparametric random-effects model using Gaussian process priors. The proposed model captures the heterogeneity nonlinearly and the covariance structure nonparametrically, enabling longitudinal studies of functional data. The model also has a flexible form of mean structure. We develop a procedure to estimate the unknown parameters and calculate the random effects nonparametrically. The procedure uses a penalized least squares regression and a maximum a posterior estimate, yielding a more accurate prediction. The statistical theory is discussed, including information consistency. Simulation studies and two real-data examples show that the proposed method performs well.
引用
收藏
页码:53 / 78
页数:26
相关论文
empty
未找到相关数据