NONPARAMETRIC RANDOM EFFECTS FUNCTIONAL REGRESSION MODEL USING GAUSSIAN PROCESS PRIORS

被引:3
作者
Wang, Zhanfeng [1 ]
Ding, Hao [1 ]
Chen, Zimu [1 ]
Shi, Jian Qing [2 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Sch Management, Hefei, Anhui, Peoples R China
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne, Tyne & Wear, England
关键词
Functional linear model; function-on-function regression model; Gaussian process priors; nonlinear random effects; ON-FUNCTION REGRESSION; LINEAR-REGRESSION;
D O I
10.5705/ss.202018.0296
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For functional regression models with functional responses, we propose a nonparametric random-effects model using Gaussian process priors. The proposed model captures the heterogeneity nonlinearly and the covariance structure nonparametrically, enabling longitudinal studies of functional data. The model also has a flexible form of mean structure. We develop a procedure to estimate the unknown parameters and calculate the random effects nonparametrically. The procedure uses a penalized least squares regression and a maximum a posterior estimate, yielding a more accurate prediction. The statistical theory is discussed, including information consistency. Simulation studies and two real-data examples show that the proposed method performs well.
引用
收藏
页码:53 / 78
页数:26
相关论文
共 29 条
[1]   Robust functional regression model for marginal mean and subject-specific inferences [J].
Cao, Chunzheng ;
Shi, Jian Qing ;
Lee, Youngjo .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (11) :3236-3254
[2]  
Cheng Y., 2017, ARXIV160506779
[3]   Asymptotics of prediction in functional linear regression with functional outputs [J].
Crambes, Christophe ;
Mas, Andre .
BERNOULLI, 2013, 19 (5B) :2627-2651
[4]   Dynamic Retrospective Regression for Functional Data [J].
Gervini, Daniel .
TECHNOMETRICS, 2015, 57 (01) :26-34
[5]  
HASTIE T, 1993, J ROY STAT SOC B MET, V55, P757
[6]   Additive Function-on-Function Regression [J].
Kim, Janet S. ;
Staicu, Ana-Maria ;
Maity, Arnab ;
Carroll, Raymond J. ;
Ruppert, David .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) :234-244
[7]   Recent history functional linear models for sparse longitudinal data [J].
Kim, Kion ;
Sentuerk, Damla ;
Li, Runze .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) :1554-1566
[8]   Function-on-Function Linear Regression by Signal Compression [J].
Luo, Ruiyan ;
Qi, Xin .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :690-705
[9]   The historical functional linear model [J].
Malfait, N ;
Ramsay, JO .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (02) :115-128
[10]   Bayesian Function-on-Function Regression for Multilevel Functional Data [J].
Meyer, Mark J. ;
Coull, Brent A. ;
Versace, Francesco ;
Cinciripini, Paul ;
Morris, Jeffrey S. .
BIOMETRICS, 2015, 71 (03) :563-574