STOKES AND NAVIER-STOKES EQUATIONS WITH PERFECT SLIP ON WEDGE TYPE DOMAINS

被引:1
作者
Maier, Siegfried [1 ]
Saal, Juergen [1 ]
机构
[1] Univ Dusseldorf, Math Inst, D-40204 Dusseldorf, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2014年 / 7卷 / 05期
关键词
Stokes equations; wedge domains; Kondrat'ev spaces; perfect slip; H-infinity-calculus; H-INFINITY-CALCULUS; PARABOLIC EQUATIONS; BOUNDARY-CONDITIONS; REGULARITY; OPERATOR; FLOWS; SUMS;
D O I
10.3934/dcdss.2014.7.1045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Well-posedness of the Stokes and Navier-Stokes equations subject to perfect slip boundary conditions on wedge type domains is studied. Applying the operator sum method we derive an H-infinity-calculus for the Stokes operator in weighted L-gamma(p) spaces (Kondrat'ev spaces) which yields maximal regularity for the linear Stokes system. This in turn implies mild well-posedness for the Navier-Stokes equations, locally-in-time for arbitrary and globally-in-time for small data in L-p.
引用
收藏
页码:1045 / 1063
页数:19
相关论文
共 27 条