Preparation and characterization of thermoresponsive poly(N-isopropylacrylamide) copolymers with enhanced hydrophilicity

被引:18
|
作者
Fan, Xiaoguang [1 ]
Gu, Shiya [1 ]
Wu, Liyan [1 ]
Yang, Lei [2 ]
机构
[1] Shenyang Agr Univ, Coll Engn, Shenyang 110866, Peoples R China
[2] Liaoning Shihua Univ, Sch Petrochem Engn, Fushun 113001, Peoples R China
基金
中国国家自然科学基金;
关键词
poly(N-isopropylacrylamide) (PNIPAAm); N-vinyl pyrrolidone (NVP); lower critical solution temperature (LCST); dynamic light scattering (DLS); hydrophilicity; SWELLING BEHAVIOR; CELL-ADHESION; MEMBRANE; POLYMERIZATION; METHACRYLATE);
D O I
10.1515/epoly-2020-0061
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The poly(N-isopropylacrylamide) copolymers with the enhanced hydrophilicity were synthesized by free radical polymerization from a mixture of the monomers N-isopropylacrylamide (NIPAAm), N-vinyl pyrrolidone (NVP), hydroxypropyl methacrylate (HPM) and 3-trimethoxysilypropyl methacrylate (TMSPM) at different feeding ratios. The attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR), nuclear magnetic resonance (H-1-NMR) and gel permeation chromatography (GPC) were applied to characterize the resultant copolymers. The lower critical solution temperature (LCST) of the copolymers was determined via dynamic light scattering (DLS). By alternating the molar ratios of NIPAAm and NVP, the copolymers were synthesized to have their own distinctive LCST from 25 degrees C to 40 degrees C. Regardless of the starting feed ratio used, the final copolymers had the similar monomeric ratio as planned. The copolymer films were then formed on platinum wafers by drop coating and thermal annealing owing to 3-trimethoxysilyl crosslinking and reacting with hydroxyl groups. The surface wettability and morphology of the specimens were observed using contact angle measurements and scanning electron microscopy (SEM), respectively. The results demonstrated that with the increase of the NVP content, the film surface became more hydrophilic. The surface microstructure of the thermoresponsive films varied depending on the copolymer composition and ambient temperature. The experimental results indicated that the addition of NVP not only increased the LCST of copolymers but also improved the hydrophilicity of the products derived from the copolymers. This ability to elevate the LCST of the polymers provides excellent flexibility in tailoring transitions for specific uses, like controlled drug release and nondestructive cell harvest.
引用
收藏
页码:561 / 570
页数:10
相关论文
共 50 条
  • [31] Micellization and phase transition behavior of thermosensitive poly(N-isopropylacrylamide)-poly(ε-caprolactone)-poly (N-isopropylacrylamide) triblock copolymers
    Loh, Xian Jun
    Wu, Yun-Long
    Seow, Wei Tat Joseph
    Norimzan, Muhammad Nor Irzuan
    Zhang, Zhong-Xing
    Xu, Fu-Jian
    Kang, En-Tang
    Neoh, Koon-Gee
    Li, Jun
    POLYMER, 2008, 49 (23) : 5084 - 5094
  • [32] Stability properties of thermoresponsive poly(N-isopropylacrylamide)-trypsin conjugates
    Hao, Y
    Andersson, M
    Virto, C
    Galaev, IY
    Mattiasson, B
    Hatti-Kaul, R
    BIOCATALYSIS AND BIOTRANSFORMATION, 2001, 19 (5-6) : 341 - 359
  • [33] Surface friction of thermoresponsive poly(N-isopropylacrylamide) gels in water
    Suzuki, Atsushi
    Ishii, Ryota
    Yamakami, Yoji
    Nakano, Ken
    COLLOID AND POLYMER SCIENCE, 2011, 289 (5-6) : 561 - 568
  • [34] Thermoresponsive hydrogels based on poly(N-isopropylacrylamide)/chondroitin sulfate
    Varghese, Justin M.
    Ismail, Yahya A.
    Lee, Chang Kee
    Shin, Kwang Min
    Shin, Min Yoon
    Kim, Sun I.
    So, Insuk
    Kim, Seon Jeong
    SENSORS AND ACTUATORS B-CHEMICAL, 2008, 135 (01) : 336 - 341
  • [35] Surface friction of thermoresponsive poly(N-isopropylacrylamide) gels in water
    Atsushi Suzuki
    Ryota Ishii
    Yoji Yamakami
    Ken Nakano
    Colloid and Polymer Science, 2011, 289 : 561 - 568
  • [36] Fractionation and characterization of poly(N-isopropylacrylamide)
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 1998, 26 (03): : 64 - 67
  • [37] Thermoresponsive sodium alginate-g-poly(N-isopropylacrylamide) copolymers III. Solution properties
    Cheaburu, Catalina Natalia
    Ciocoiu, Oana-Nicoleta
    Staikos, Georgios
    Vasile, Cornelia
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (05) : 3340 - 3348
  • [38] Synthesis and characterization of temperature responsive graft copolymers of dextran with poly (N-isopropylacrylamide)
    Wang, LQ
    Tu, KH
    Li, YP
    Zhang, J
    Jiang, LM
    Zhang, ZH
    REACTIVE & FUNCTIONAL POLYMERS, 2002, 53 (01): : 19 - 27
  • [39] Influence of preparation conditions of poly (ethylene glycol)/poly (N-isopropylacrylamide) block copolymers on their properties
    Shimizu, H
    Yokohara, T
    Wada, R
    Okabe, M
    KOBUNSHI RONBUNSHU, 2004, 61 (12) : 640 - 642
  • [40] Thermoresponsive diblock copolymer comprising of poly(N-isopropylacrylamide) and poly(N-vinylpyrrolidone)
    Yusa, Shin-Ichi
    Yamago, Shigeru
    Morishima, Yotaro
    WMSCI 2006: 10TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS, 2006, : 21 - +