Preparation and characterization of thermoresponsive poly(N-isopropylacrylamide) copolymers with enhanced hydrophilicity

被引:18
|
作者
Fan, Xiaoguang [1 ]
Gu, Shiya [1 ]
Wu, Liyan [1 ]
Yang, Lei [2 ]
机构
[1] Shenyang Agr Univ, Coll Engn, Shenyang 110866, Peoples R China
[2] Liaoning Shihua Univ, Sch Petrochem Engn, Fushun 113001, Peoples R China
基金
中国国家自然科学基金;
关键词
poly(N-isopropylacrylamide) (PNIPAAm); N-vinyl pyrrolidone (NVP); lower critical solution temperature (LCST); dynamic light scattering (DLS); hydrophilicity; SWELLING BEHAVIOR; CELL-ADHESION; MEMBRANE; POLYMERIZATION; METHACRYLATE);
D O I
10.1515/epoly-2020-0061
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The poly(N-isopropylacrylamide) copolymers with the enhanced hydrophilicity were synthesized by free radical polymerization from a mixture of the monomers N-isopropylacrylamide (NIPAAm), N-vinyl pyrrolidone (NVP), hydroxypropyl methacrylate (HPM) and 3-trimethoxysilypropyl methacrylate (TMSPM) at different feeding ratios. The attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR), nuclear magnetic resonance (H-1-NMR) and gel permeation chromatography (GPC) were applied to characterize the resultant copolymers. The lower critical solution temperature (LCST) of the copolymers was determined via dynamic light scattering (DLS). By alternating the molar ratios of NIPAAm and NVP, the copolymers were synthesized to have their own distinctive LCST from 25 degrees C to 40 degrees C. Regardless of the starting feed ratio used, the final copolymers had the similar monomeric ratio as planned. The copolymer films were then formed on platinum wafers by drop coating and thermal annealing owing to 3-trimethoxysilyl crosslinking and reacting with hydroxyl groups. The surface wettability and morphology of the specimens were observed using contact angle measurements and scanning electron microscopy (SEM), respectively. The results demonstrated that with the increase of the NVP content, the film surface became more hydrophilic. The surface microstructure of the thermoresponsive films varied depending on the copolymer composition and ambient temperature. The experimental results indicated that the addition of NVP not only increased the LCST of copolymers but also improved the hydrophilicity of the products derived from the copolymers. This ability to elevate the LCST of the polymers provides excellent flexibility in tailoring transitions for specific uses, like controlled drug release and nondestructive cell harvest.
引用
收藏
页码:561 / 570
页数:10
相关论文
共 50 条
  • [1] Physicochemical characterization of thermoresponsive Poly(N-isopropylacrylamide)-poly(ethylene imine) graft copolymers
    Griffiths, Peter C.
    Alexander, Cameron
    Nilmini, Renuka
    Pennadam, Sivanand S.
    King, Stephen M.
    Heenan, Richard K.
    BIOMACROMOLECULES, 2008, 9 (04) : 1170 - 1178
  • [2] Preparation and Characterization of Thermoresponsive Poly(N-Isopropylacrylamide) for Cell Culture Applications
    Yang, Lei
    Fan, Xiaoguang
    Zhang, Jing
    Ju, Jia
    POLYMERS, 2020, 12 (02)
  • [3] Synthesis and Characterization of Thermoresponsive Chitosan-graft-poly(N-isopropylacrylamide) Copolymers
    Babelyte, Migle
    Peciulyte, Laura
    Navikaite-Snipaitiene, Vesta
    Bendoraitiene, Joana
    Samaryk, Volodymyr
    Rutkaite, Ramune
    POLYMERS, 2023, 15 (15)
  • [4] Enzymatic degradation of thermoresponsive poly(N-isopropylacrylamide) grafted to carboxymethylcellulose copolymers
    Vasile, C
    Marinescu, C
    Vornicu, R
    Staikos, G
    JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 87 (09) : 1383 - 1386
  • [5] Manipulating the thermoresponsive behaviour of poly(N-isopropylacrylamide) 3. On the conformational behaviour of N-isopropylacrylamide graft copolymers
    Chee, Choong-Kooi
    Hunt, Barry J.
    Rimmer, Stephen
    Rutkaite, Ramune
    Soutar, Ian
    Swanson, Linda
    SOFT MATTER, 2009, 5 (19) : 3701 - 3712
  • [6] Thermoresponsive gelation behavior of poly(N-isopropylacrylamide)-block-poly(N-vinylpyrrolidone)-block-poly(N-isopropylacrylamide) triblock copolymers
    Cong, Houluo
    Li, Jingang
    Li, Lei
    Zheng, Sixun
    EUROPEAN POLYMER JOURNAL, 2014, 61 : 23 - 32
  • [7] Manipulating the thermoresponsive behavior of poly(N-isopropylacrylamide)
    Chee, C.K.
    Rimmer, S.
    Soutar, I.
    Swanson, L.
    ACS Symposium Series, 2001, 780 : 223 - 237
  • [8] Manipulating the thermoresponsive behavior of poly(N-isopropylacrylamide).: 1.: On the conformational behavior of a series of N-isopropylacrylamide -: Styrene statistical copolymers
    Chee, CK
    Rimmer, S
    Shaw, DA
    Soutar, I
    Swanson, L
    MACROMOLECULES, 2001, 34 (21) : 7544 - 7549
  • [9] Characterization of Poly(N-isopropylacrylamide) and Magnetic Poly(N-isopropylacrylamide) Latexes
    Nemethy, Arpad
    Szilagyi, Andras
    Filipcsei, Genoveva
    Tombacz, Etelka
    Zrinyi, Miklos
    COLLOIDS FOR NANO- AND BIOTECHNOLOGY, 2008, 135 : 194 - +
  • [10] Thermoresponsive poly(N-isopropylacrylamide) copolymers:: Contact angles and surface energies of polymer films
    Gilcreest, VP
    Carroll, WM
    Rochev, YA
    Blute, I
    Dawson, KA
    Gorelov, AV
    LANGMUIR, 2004, 20 (23) : 10138 - 10145