Strict Self Assembly of Discrete Hexagonal Patterns

被引:0
作者
Dora, T. Nancy [1 ]
Kalavathy, S. M. Saroja T. [1 ]
机构
[1] Jayaraj Annapackiam Coll Women Autonomous, Math, Periyakulam, Tamil Nadu, India
来源
RECENT DEVELOPMENTS IN MATHEMATICAL ANALYSIS AND COMPUTING | 2019年 / 2095卷
关键词
D O I
10.1063/1.5097528
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the study on Abstract Tile Assembly and Multiple handed Tile Assembly Models, a special type of strict self-assembly by hexagonal tiles has been proposed by determining the interaction strength between tiles. Six handed near perfect Sierpinski hexagonal triangles have been generated. It is shown that the three handed hexagonal model does not satisfy the near perfectness.
引用
收藏
页数:10
相关论文
共 10 条
  • [1] Cannon S., 2013, P 30 INT S THEORETIC, V20, P172, DOI DOI 10.4230/LIPICS.STACS.2013.172
  • [2] Strict Self-Assembly of Fractals Using Multiple Hands
    Chalk, Cameron T.
    Fernandez, Dominic A.
    Huerta, Alejandro
    Maldonado, Mario A.
    Schweller, Robert T.
    Sweet, Leslie
    [J]. ALGORITHMICA, 2016, 76 (01) : 195 - 224
  • [3] Strict self-assembly of discrete Sierpinski triangles
    Lathrop, James I.
    Lutz, Jack H.
    Summers, Scott M.
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (4-5) : 384 - 405
  • [4] NancyDora T., 2018, J APPL SCI COMPUTATI, V5, P374
  • [5] NancyDora T., 2018, J APPL SCI COMPUTATI, V5, P71
  • [6] Self-assembly of discrete self-similar fractals
    Patitz, Matthew J.
    Summers, Scott M.
    [J]. NATURAL COMPUTING, 2010, 9 (01) : 135 - 172
  • [7] Rothemund P. W. K., 2000, Proceedings of the Thirty Second Annual ACM Symposium on Theory of Computing, P459, DOI 10.1145/335305.335358
  • [8] Algorithmic self-assembly of DNA Sierpinski triangles
    Rothemund, PWK
    Papadakis, N
    Winfree, E
    [J]. PLOS BIOLOGY, 2004, 2 (12) : 2041 - 2053
  • [9] Snyder W. E, 1999, MED IMAGING, V99, P716
  • [10] Winfree Erik, 1998, THESIS