Technical report: Targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues

被引:16
作者
Heunis, Tiaan [1 ]
Lamoliatte, Frederic [1 ]
Marin-Rubio, Jose Luis [1 ]
Dannoura, Abeer [1 ]
Trost, Matthias [1 ]
机构
[1] Newcastle Univ, Biosci Inst, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
基金
英国惠康基金; 欧盟地平线“2020”;
关键词
Parallel reaction monitoring; Absolute quantification; Ubiquitin chain-linkage; Atypical ubiquitin chain types; Primary murine macrophages; Murine; Tissues; DEGRADATION; CONTRIBUTES; COMPLEX;
D O I
10.1016/j.jprot.2020.103963
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Ubiquitylation is an elaborate post-translational modification involved in all biological processes. Its pleotropic effect is driven by the ability to form complex polyubiquitin chain architectures that can influence biological functions. In this study, we optimised sample preparation and chromatographic separation of Ubiquitin peptides for Absolute Quantification by Parallel Reaction Monitoring (Ub-AQUA-PRM). Using this refined Ub-AQUA-PRM assay, we were able to quantify all ubiquitin chain types in 10-min LC-MS/MS runs. We used this method to determine the ubiquitin chain-linkage composition in murine bone marrow-derived macrophages and different mouse tissues. We could show tissue-specific differences in ubiquitin levels in murine tissues, with polyubiquitin chain types contributing a small proportion to the total pool of ubiquitin. Interestingly, we observed enrichment of atypical (K33) ubiquitin chains in heart and muscle. Our approach enabled high-throughput screening of ubiquitin chain-linkage composition in different murine tissues and highlighted a possible role for atypical ubiquitylation in contractile tissues. Significance: Large knowledge gaps exist in our understanding of ubiquitin chain-linkage composition in mammalian tissues. Defining this in vivo ubiquitin chain-linkage landscape could reveal the functional im-portance of different ubiquitin chain types in tissues. In this study, we refined the previously described UbAQUA-PRM assay to enable quantification of all ubiquitin chain types in a high-throughput manner. Using this assay, we provided new data on the ubiquitin chain-linkage composition in primary murine macrophages and tissues, and revealed an enrichment of atypical ubiquitin chains in contractile tissues. Our approach should thus enable rapid, high-throughput screening of ubiquitin chain-linkage composition in different sample types, as demonstrated in murine primary cells and tissues.
引用
收藏
页数:5
相关论文
共 26 条
[1]   Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry Enables Characterization of Branched Ubiquitin Chains in CellulO [J].
Crowe, Sean O. ;
Rana, Ambar S. J. B. ;
Deol, Kirandeep K. ;
Ge, Ying ;
Strieter, Eric R. .
ANALYTICAL CHEMISTRY, 2017, 89 (08) :4428-4434
[2]   USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria [J].
Cunningham, Christian N. ;
Baughman, Joshua M. ;
Phu, Lilian ;
Tea, Joy S. ;
Yu, Christine ;
Coons, Mary ;
Kirkpatrick, Donald S. ;
Bingol, Bans ;
Corn, Jacob E. .
NATURE CELL BIOLOGY, 2015, 17 (02) :160-+
[3]   Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain [J].
Deng, L ;
Wang, C ;
Spencer, E ;
Yang, LY ;
Braun, A ;
You, JX ;
Slaughter, C ;
Pickart, C ;
Chen, ZJ .
CELL, 2000, 103 (02) :351-361
[4]   The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition [J].
Deutsch, Eric W. ;
Csordas, Attila ;
Sun, Zhi ;
Jarnuczak, Andrew ;
Perez-Riverol, Yasset ;
Ternent, Tobias ;
Campbell, David S. ;
Bernal-Llinares, Manuel ;
Okuda, Shujiro ;
Kawano, Shin ;
Moritz, Robert L. ;
Carver, Jeremy J. ;
Wang, Mingxun ;
Ishihama, Yasushi ;
Bandeira, Nuno ;
Hermjakob, Henning ;
Vizcaino, Juan Antonio .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D1100-D1106
[5]   TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity [J].
Gack, Michaela U. ;
Shin, Young C. ;
Joo, Chul-Hyun ;
Urano, Tomohiko ;
Liang, Chengyu ;
Sun, Lijun ;
Takeuchi, Osamu ;
Akira, Shizuo ;
Chen, Zhijian ;
Inoue, Satoshi ;
Jung, Jae U. .
NATURE, 2007, 446 (7138) :916-U2
[6]   Linear ubiquitination prevents inflammation and regulates immune signalling [J].
Gerlach, Bjoern ;
Cordier, Stefanie M. ;
Schmukle, Anna C. ;
Emmerich, Christoph H. ;
Rieser, Eva ;
Haas, Tobias L. ;
Webb, Andrew I. ;
Rickard, James A. ;
Anderton, Holly ;
Wong, Wendy W-L. ;
Nachbur, Ueli ;
Gangoda, Lahiru ;
Warnken, Uwe ;
Purcell, Anthony W. ;
Silke, John ;
Walczak, Henning .
NATURE, 2011, 471 (7340) :591-+
[7]   S-Trap, an Ultrafast Sample-Preparation Approach for Shotgun Proteomics [J].
HaileMariam, Milkessa ;
Eguez, Rodrigo Vargas ;
Singh, Harinder ;
Bekele, Shiferaw ;
Ameni, Gobena ;
Pieper, Rembert ;
Yu, Yanbao .
JOURNAL OF PROTEOME RESEARCH, 2018, 17 (09) :2917-2924
[8]   Mass spectrometry techniques for studying the ubiquitin system [J].
Heap, Rachel E. ;
Gant, Megan S. ;
Lamoliatte, Frederic ;
Peltier, Julien ;
Trost, Matthias .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2017, 45 :1137-1148
[9]   Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology [J].
Kirkpatrick, Donald S. ;
Hathaway, Nathaniel A. ;
Hanna, John ;
Elsasser, Suzanne ;
Rush, John ;
Finley, Daniel ;
King, Randall W. ;
Gygi, Steven P. .
NATURE CELL BIOLOGY, 2006, 8 (07) :700-U121
[10]   Ubiquitin is phosphorylated by PINK1 to activate parkin [J].
Koyano, Fumika ;
Okatsu, Kei ;
Kosako, Hidetaka ;
Tamura, Yasushi ;
Go, Etsu ;
Kimura, Mayumi ;
Kimura, Yoko ;
Tsuchiya, Hikaru ;
Yoshihara, Hidehito ;
Hirokawa, Takatsugu ;
Endo, Toshiya ;
Fon, Edward A. ;
Trempe, Jean-Francois ;
Saeki, Yasushi ;
Tanaka, Keiji ;
Matsuda, Noriyuki .
NATURE, 2014, 510 (7503) :162-+