Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery

被引:41
作者
Cheng, Yayi [1 ]
Huang, Jianfeng [1 ]
Li, Ruizi [1 ]
Xu, Zhanwei [1 ]
Cao, Liyun [1 ]
Ouyang, Haibo [1 ]
Li, Jiayin [1 ]
Qi, Hui [1 ]
Wang, Caiwei [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Tin; Hollow structure; Na-ion battery; Electrochemical performance; NEGATIVE ELECTRODE MATERIAL; SENSITIZED SOLAR-CELLS; HIGH-CAPACITY; ANODE MATERIALS; TIN NANOPARTICLES; ACCURATE CONTROL; FACILE SYNTHESIS; STABLE ANODE; LI-ION; SODIUM;
D O I
10.1016/j.electacta.2015.08.125
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hollow Sn nanostructures were obtained by simply controlling PVP addition in a solution-based reduction process. These nanostructures are assembled by many Sn nanoparticles with an inner void structure in the center. As an anode in Na-ion battery, the hollow Sn nanoparticles present improved cycling stability and capability in comparison with solid Sn nanoparticles, clearly indicating enhanced electrochemical properties for pure Sn anode in Na-ion battery. Moreover, their electrochemical impedance spectroscopy and charge/discharge profiles reveal the hollow structure not only maintains much higher capacity at large volumetric shrinkage process, but also provides structural stability and facilitated charge transfer in Sn anodes during the electrochemical reaction. Therefore, this hollow Sn nanostructure could provide new insight towards the exploration and design of alloy anode materials in Na-ion battery. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 51 条
[31]   Muftishelled TiO2 Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries [J].
Ren, Hao ;
Yu, Ranbo ;
Wang, Jiangyan ;
Jin, Quan ;
Yang, Mei ;
Mao, Dan ;
Kisailus, David ;
Zhao, Huijun ;
Wang, Dan .
NANO LETTERS, 2014, 14 (11) :6679-6684
[32]   Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries [J].
Senguttuvan, P. ;
Rousse, G. ;
Vezin, H. ;
Tarascon, J. -M. ;
Palacin, M. R. .
CHEMISTRY OF MATERIALS, 2013, 25 (12) :2391-2393
[33]   Sodium-Ion Batteries [J].
Slater, Michael D. ;
Kim, Donghan ;
Lee, Eungje ;
Johnson, Christopher S. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :947-958
[34]   Growth of Polypyrrole Ultrathin Films on MoS2 Monolayers as High-Performance Supercapacitor Electrodes [J].
Tang, Hongjie ;
Wang, Jiangyan ;
Yin, Huajie ;
Zhao, Huijun ;
Wang, Dan ;
Tang, Zhiyong .
ADVANCED MATERIALS, 2015, 27 (06) :1117-1123
[35]   (Cu6Sn5)1-xCx active/inactive nanocomposite negative electrodes for Na-ion batteries [J].
Thorne, J. S. ;
Dunlap, R. A. ;
Obrovac, M. N. .
ELECTROCHIMICA ACTA, 2013, 112 :133-137
[36]   Microstructural Evolution of Tin Nanoparticles during In Situ Sodium Insertion and Extraction [J].
Wang, Jiang Wei ;
Liu, Xiao Hua ;
Mao, Scott X. ;
Huang, Jian Yu .
NANO LETTERS, 2012, 12 (11) :5897-5902
[37]   Accurate Control of Multishelled Co3O4 Hollow Microspheres as High-Performance Anode Materials in Lithium-Ion Batteries [J].
Wang, Jiangyan ;
Yang, Nailiang ;
Tang, Hongjie ;
Dong, Zhenghong ;
Jin, Quan ;
Yang, Mei ;
Kisailus, David ;
Zhao, Huijun ;
Tang, Zhiyong ;
Wang, Dan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (25) :6417-6420
[38]   Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries [J].
Wang, Wei ;
Yu, Chengjun ;
Liu, Yingjun ;
Hou, Jungang ;
Zhu, Hongmin ;
Jiao, Shuqiang .
RSC ADVANCES, 2013, 3 (04) :1041-1044
[39]   SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries [J].
Wang, Ying ;
Su, Dawei ;
Wang, Chengyin ;
Wang, Guoxiu .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 29 :8-11
[40]   Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries [J].
Wu, Lin ;
Hu, Xiaohong ;
Qian, Jiangfeng ;
Pei, Feng ;
Wu, Fayuan ;
Mao, Rongjun ;
Ai, Xinping ;
Yang, Hanxi ;
Cao, Yuliang .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :323-328