Crushing Behaviour of Plain Weave Composite Hexagonal Cellular Structure

被引:1
作者
Alkbir, M. F. M. [1 ]
Januddi, Fatihhi [1 ]
Baki, Adnan [1 ]
Sapuan, S. M. [2 ]
Kosnan, M. S. E. [1 ]
Mohamed, S. B. [3 ]
Hamuoda, M. S. [4 ]
Endut, A. [3 ]
机构
[1] UniKL Malaysian Inst Ind Technol MITEC, Facil Maintenance Engn, Masai 81750, Johor Darul Tak, Malaysia
[2] Univ Putra Malaysia, Dept Mech & Mfg Engn, Upm Serdang 43400, Selangor Darul, Malaysia
[3] Univ Sultan Zainal Abidin UniSZA, Fac Innovat Design & Technol, Kuala Terengganu 21300, Terengganu Daru, Malaysia
[4] Qatar Univ, Coll Engn, Dept Mech & Ind Engn, POB 2713, Doha, Qatar
来源
SAINS MALAYSIANA | 2020年 / 49卷 / 09期
关键词
Composite; crushing behavior; hexagonal cellular structure; plain weave; ENERGY-ABSORPTION CAPABILITY; CRASHWORTHINESS CHARACTERISTICS; TUBES;
D O I
10.17576/jsm-2020-4909-18
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The tradition of fibre composite materials in energy absorbing tube applications has gained interest in structural collisions in the composite materials industry. Thus, the subject of this work is the experimental investigation to understand the effects of the failure initiator at the specimen's edge, causing the increase in the specific absorbed energy (SEA), as well as the influence of the cellular structure composed of cells with small hexagonal angle exhibited high energy absorption capability. An extensive experimental investigation of an in plane crashing behavior of the composite hexagonal cellular structure between platen has been carried out. The cellular structure composed of hexagonal cells with angles varying between 45 and 60 degrees. The materials used to accomplish the study are the plain weave E-glass fabric as a reinforcement and the epoxy resin system as a matrix. Furthermore, the specific energy absorption increases as the hexagonal angle increases.
引用
收藏
页码:2211 / 2219
页数:9
相关论文
共 19 条
[1]   Effect of geometry on the crushing behaviour of laminated corrugated composite tubes [J].
Abdewi, EF ;
Sulaiman, S ;
Hamouda, AMS ;
Mahdi, E .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 172 (03) :394-399
[2]  
Alkbir MFM, 2016, J ENG FIBER FABR, V11, P75
[3]   Lateral crushing properties of non-woven kenaf (mat)-reinforced epoxy composite hexagonal tubes [J].
Alkbir, Munir Faraj Almbrouk ;
Salit, Mohd Sapuan B. ;
Aziz, Nuraini Bt. Abdul ;
Ishak, Mohamad Ridzwan .
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2016, 17 (07) :965-972
[4]   Mechanical properties and energy absorption capability of woven fabric composites under ±45° off-axis tension [J].
Bergmann, Tim ;
Heimbs, Sebastian ;
Maier, Martin .
COMPOSITE STRUCTURES, 2015, 125 :362-373
[5]   Crushing response of composite corrugated tubes to quasi-static axial loading [J].
Elgalai, AM ;
Mahdi, E ;
Hamouda, AMS ;
Sahari, BS .
COMPOSITE STRUCTURES, 2004, 66 (1-4) :665-671
[6]   Effect of trigger configuration on the crashworthiness characteristics of natural silk epoxy composite tubes [J].
Eshkoor, R. A. ;
Oshkovr, S. A. ;
Sulong, A. B. ;
Zulkifli, R. ;
Ariffin, A. K. ;
Azhari, C. H. .
COMPOSITES PART B-ENGINEERING, 2013, 55 :5-10
[7]   Quasi-static crush energy absorption capability of E-glass/polyester and hybrid E-glass-basalt/polyester composite structures [J].
Esnaola, A. ;
Ulacia, I. ;
Aretxabaleta, L. ;
Aurrekoetxea, J. ;
Gallego, I. .
MATERIALS & DESIGN, 2015, 76 :18-25
[8]   The effect of FRP thickness on energy absorption of metal-FRP square tubes subjected to axial compressive loading [J].
Kalhor, Roozbeh ;
Case, Scott W. .
COMPOSITE STRUCTURES, 2015, 130 :44-50
[9]   Progressive failure analysis and energy-absorbing experiment of composite tubes under axial dynamic impact [J].
Luo, Haibo ;
Yan, Ying ;
Meng, Xiangji ;
Jin, Can .
COMPOSITES PART B-ENGINEERING, 2016, 87 :1-11
[10]   A study on the energy absorption properties of carbon/aramid fiber filament winding composite tube [J].
Ma, Yan ;
Sugahara, Toshi ;
Yang, Yuqiu ;
Hamada, Hiroyuki .
COMPOSITE STRUCTURES, 2015, 123 :301-311