A new orthogonality empirical likelihood for varying coefficient partially linear instrumental variable models with longitudinal data

被引:8
|
作者
Zhao, Peixin [1 ,2 ]
Zhou, Xiaoshuang [3 ]
Wang, Xiuli [4 ]
Huang, Xingshou [5 ]
机构
[1] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing, Peoples R China
[2] Chongqing Key Lab Social Econ & Appl Stat, Chongqing, Peoples R China
[3] Dezhou Univ, Sch Math Sci, Dezhou, Shandong, Peoples R China
[4] Shandong Normal Univ, Sch Math Sci, Jinan, Shandong, Peoples R China
[5] Hechi Univ, Coll Math & Stat, Yizhou, Guangxi, Peoples R China
关键词
Varying coefficient partially linear model; Longitudinal data; Endogenous covariate; Empirical likelihood;
D O I
10.1080/03610918.2018.1547396
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Varying coefficient partially linear models are usually used for longitudinal data analysis, and an interest is mainly to improve efficiency of regression coefficients. By the orthogonality estimation technology and the empirical likelihood inference method, we propose a new orthogonality-based empirical likelihood inference method to estimate parameter and nonparametric components in a class of varying coefficient partially linear instrumental variable models with longitudinal data. The proposed procedure can separately estimate the parametric and nonparametric components, and the resulting estimators do not affect each other. Under some mild conditions, we establish some asymptotic properties of the resulting estimators. Furthermore, the finite sample performance of the proposed procedure is assessed by some simulation experiments and a real data analysis.
引用
收藏
页码:3328 / 3344
页数:17
相关论文
共 50 条
  • [31] Empirical likelihood inference in mixtures of semiparametric varying coefficient EV models for longitudinal data with nonignorable dropout
    Xing-cai Zhou
    Jin-Guan Lin
    Journal of the Korean Statistical Society, 2013, 42 : 215 - 225
  • [32] Empirical Likelihood Inference for a Partially Linear Model under Longitudinal Data
    Jiang, Yuying
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING, PTS 1-4, 2013, 353-356 : 3355 - 3358
  • [33] Block empirical likelihood for longitudinal partially linear regression models
    You, JH
    Chen, GM
    Zhou, Y
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (01): : 79 - 96
  • [34] Weighted empirical likelihood for generalized linear models with longitudinal data
    Bai, Yang
    Fung, Wing Kam
    Zhu, Zhongyi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3446 - 3456
  • [35] Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models
    Xiuli Wang
    Gaorong Li
    Lu Lin
    Metrika, 2011, 73 : 171 - 185
  • [36] Empirical Likelihood for Semiparametric Varying-Coefficient Heteroscedastic Partially Linear Errors-in-Variables Models
    Fan, Guo-Liang
    Huang, Zhen-Sheng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (13) : 2437 - 2450
  • [37] Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models
    Wang, Xiuli
    Li, Gaorong
    Lin, Lu
    METRIKA, 2011, 73 (02) : 171 - 185
  • [38] Calibration of the empirical likelihood for semiparametric varying-coefficient partially linear models with diverging number of parameters
    He, Junwei
    Chen, Xia
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (01): : 230 - 241
  • [39] Focused information criterion and model averaging for varying-coefficient partially linear models with longitudinal data
    Hu, Guozhi
    Cheng, Weihu
    Zeng, Jie
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (08) : 2399 - 2417
  • [40] Empirical likelihood based heteroscedasticity diagnostics for varying coefficient partially nonlinear models
    Wang, Cuiping
    Zhou, Xiaoshuang
    Zhao, Peixin
    AIMS MATHEMATICS, 2024, 9 (12): : 34705 - 34719