共 42 条
Enhancement of Imaging Quality of Interferenceless Coded Aperture Correlation Holography Based on Physics-Informed Deep Learning
被引:8
作者:
Xiong, Rui
[1
]
Zhang, Xiangchao
[1
,2
]
Ma, Xinyang
[1
]
Qi, Lili
[1
,2
]
Li, Leheng
[1
]
Jiang, Xiangqian
[1
,3
]
机构:
[1] Fudan Univ, Shanghai Engn Res Ctr Ultraprecis Opt Mfg, Sch Informat Sci & Technol, Shanghai 200438, Peoples R China
[2] Fudan Univ, Yiwu Res Inst, Chengbei Rd, Yiwu 322000, Peoples R China
[3] Univ Huddersfield, Future Metrol Hub, Huddersfield HD1 3DH, England
来源:
基金:
中国国家自然科学基金;
关键词:
digital holography;
coded aperture imaging;
deep learning;
image reconstruction;
DIGITAL HOLOGRAMS;
PHASE;
FIELD;
D O I:
10.3390/photonics9120967
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
Interferenceless coded aperture correlation holography (I-COACH) was recently introduced for recording incoherent holograms without two-wave interference. In I-COACH, the light radiated from an object is modulated by a pseudo-randomly-coded phase mask and recorded as a hologram by a digital camera without interfering with any other beams. The image reconstruction is conducted by correlating the object hologram with the point spread hologram. However, the image reconstructed by the conventional correlation algorithm suffers from serious background noise, which leads to poor imaging quality. In this work, via an effective combination of the speckle correlation and neural network, we propose a high-quality reconstruction strategy based on physics-informed deep learning. Specifically, this method takes the autocorrelation of the speckle image as the input of the network, and switches from establishing a direct mapping between the object and the image into a mapping between the autocorrelations of the two. This method improves the interpretability of neural networks through prior physics knowledge, thereby remedying the data dependence and computational cost. In addition, once a final model is obtained, the image reconstruction can be completed by one camera exposure. Experimental results demonstrate that the background noise can be effectively suppressed, and the resolution of the reconstructed images can be enhanced by three times.
引用
收藏
页数:14
相关论文