Cocycle rigidity of partially hyperbolic abelian actions with almost rank-one factors

被引:1
作者
Vinhage, Kurt [1 ]
机构
[1] Univ Chicago, Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
LOCAL RIGIDITY; PARABOLIC ACTIONS; ACTIONS I;
D O I
10.1017/etds.2017.119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the recent progress on the cocycle rigidity of partially hyperbolic homogeneous abelian actions to the setting with rank-one factors in the universal cover. The method of proof relies on the periodic cycle functional and analysis of the cycle structure, but uses a new argument to give vanishing.
引用
收藏
页码:2006 / 2016
页数:11
相关论文
共 19 条
[1]  
Damjanovic D, 2005, DISCRETE CONT DYN-A, V13, P985
[2]   Central extensions of simple lie groups and rigidity of some abelian partially hyperbolic algebraic actions [J].
Damjanovic, Danijela .
JOURNAL OF MODERN DYNAMICS, 2007, 1 (04) :665-688
[3]   LOCAL RIGIDITY OF HOMOGENEOUS PARABOLIC ACTIONS: I. A MODEL CASE [J].
Damjanovic, Danijela ;
Katok, Anatole .
JOURNAL OF MODERN DYNAMICS, 2011, 5 (02) :203-235
[4]   Local Rigidity of Partially Hyperbolic Actions. II: The Geometric Method and Restrictions of Weyl Chamber Flows on SL(n, R)/Γ [J].
Damjanovic, Danijela ;
Katok, Anatole .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (19) :4405-4430
[5]   Local rigidity of partially hyperbolic actions I. KAM method and Zk actions on the torus [J].
Damjanovic, Danijela ;
Katok, Anatole .
ANNALS OF MATHEMATICS, 2010, 172 (03) :1805-1858
[6]   ON A CLASS OF TRANSFORMATION GROUPS [J].
GLEASON, AM ;
PALAIS, RS .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (03) :631-648
[7]  
Katok A, 1994, MATH RES LETT, V1, P193
[8]  
Katok A., 1997, Tr. Mat. Inst. Steklova, V216, P292
[9]  
Katok A., 2011, Cambridge Tracts in Mathematics, V185
[10]  
KATOK A, ERGOD TH DYNAM SYS, V20, P259