Random walks, spectral radii, and Ramanujan graphs

被引:0
|
作者
Nagnibeda, T [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
来源
RANDOM WALKS AND GEOMETRY | 2004年
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate properties of random walks on trees with finitely many cone types and apply our results to get estimates on spectral radii of groups and to check whether a given finite graph is Ramanujan.
引用
收藏
页码:487 / 500
页数:14
相关论文
共 50 条
  • [31] The Aα-Spectral Radii of Graphs with Given Connectivity
    Wang, Chunxiang
    Wang, Shaohui
    MATHEMATICS, 2019, 7 (01):
  • [32] On the Laplacian spectral radii of bicyclic graphs
    He, Chang-Xiang
    Shao, Jia-Yu
    He, Jin-Ling
    DISCRETE MATHEMATICS, 2008, 308 (24) : 5981 - 5995
  • [33] On the Laplacian spectral radii of tricyclic graphs
    Liu Mu-huo
    Wei Fu-yi
    Liu, Bolian
    ARS COMBINATORIA, 2014, 114 : 129 - 143
  • [34] Ramanujan graphs and the spectral gap of supercomputing topologies
    Sinan G. Aksoy
    Paul Bruillard
    Stephen J. Young
    Mark Raugas
    The Journal of Supercomputing, 2021, 77 : 1177 - 1213
  • [35] Ramanujan graphs and the spectral gap of supercomputing topologies
    Aksoy, Sinan G.
    Bruillard, Paul
    Young, Stephen J.
    Raugas, Mark
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (02) : 1177 - 1213
  • [36] Exploring complex graphs by random walks
    Tadic, B
    MODELING OF COMPLEX SYSTEMS, 2003, 661 : 24 - 27
  • [37] Random walks on regular and irregular graphs
    Coppersmith, D
    Feige, U
    Shearer, J
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) : 301 - 308
  • [38] Random walks on edge transitive graphs
    Palacios, J. L.
    Renom, J. M.
    Statistics & Probability Letters, 37 (01):
  • [39] Random walks and local cuts in graphs
    Chung, Fan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 22 - 32
  • [40] Meeting times of random walks on graphs
    Bshouty, NH
    Higham, L
    Warpechowska-Gruca, J
    INFORMATION PROCESSING LETTERS, 1999, 69 (05) : 259 - 265