Bound states of lattice solitons and their bifurcations

被引:26
作者
Zolotaryuk, Y [1 ]
Eilbeck, JC [1 ]
Savin, AV [1 ]
机构
[1] INST PROBLEMS PHYS & TECHNOL,MOSCOW 119034,RUSSIA
来源
PHYSICA D | 1997年 / 108卷 / 1-2期
关键词
topological solitons; bifurcations; pseudo-spectral method;
D O I
10.1016/S0167-2789(97)82006-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Families of travelling wave solutions have been studied in a one-dimensional kink-bearing model with a nonlinear intersite coupling. The value of the soliton velocity depends on the parameters of the system such as an anharmonicity parameter and the barrier height of the on-site potential, to which the chain is subjected. These dependencies have been studied numerically using a pseudo-spectral method. The solution space of the bound state lattice solitons has an interesting bifurcation structure.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 13 条
[1]  
Bishop A. R., 1980, Physica D, V1D, P1, DOI 10.1016/0167-2789(80)90003-2
[2]   STATISTICAL-MECHANICS OF ONE-DIMENSIONAL SOLITARY-WAVE-BEARING SCALAR FIELDS - EXACT RESULTS AND IDEAL-GAS PHENOMENOLOGY [J].
CURRIE, JF ;
KRUMHANSL, JA ;
BISHOP, AR ;
TRULLINGER, SE .
PHYSICAL REVIEW B, 1980, 22 (02) :477-496
[3]  
DODD RK, 1984, SOLITONS NONLINEAR W
[4]   SOLITONS ON LATTICES [J].
DUNCAN, DB ;
EILBECK, JC ;
FEDDERSEN, H ;
WATTIS, JAD .
PHYSICA D, 1993, 68 (01) :1-11
[5]   CALCULATION OF FAMILIES OF SOLITARY WAVES ON DISCRETE LATTICES [J].
EILBECK, JC ;
FLESCH, R .
PHYSICS LETTERS A, 1990, 149 (04) :200-202
[6]   SUPERSONIC MOTION OF A CROWDION - ONE-DIMENSIONAL MODEL WITH NONLINEAR-INTERACTION BETWEEN NEAREST NEIGHBORS [J].
KOSEVICH, AM ;
KOVALEV, AS .
SOLID STATE COMMUNICATIONS, 1973, 12 (08) :763-765
[7]   DYNAMICS AND STATISTICAL-MECHANICS OF A ONE-DIMENSIONAL MODEL HAMILTONIAN FOR STRUCTURAL PHASE-TRANSITIONS [J].
KRUMHANSL, JA ;
SCHRIEFFER, JR .
PHYSICAL REVIEW B, 1975, 11 (09) :3535-3545
[8]  
MILCHEV A, 1989, PHYS REV B, V42, P6727
[9]  
ORFANIDIS SJ, 1978, PHYS REV D, V18, P3823
[10]   KINK DYNAMICS IN THE HIGHLY DISCRETE SINE-GORDON SYSTEM [J].
PEYRARD, M ;
KRUSKAL, MD .
PHYSICA D, 1984, 14 (01) :88-102